
1

The Fusion Process from an Object-Oriented Perspective

Pavel Hruby
Navision Software a/s

ph@navision.com

Many software developers use the Fusion method
with some modifications and adaptations to meet
their specific needs. We at Navision Software a/s
began to use the Fusion method about a year ago. We
supplemented the method by working with use cases
and incremental development. We also defined a
relationship between Fusion and the project
management process and made several other minor
changes in order to be able to use UML as a notation.

In our modified definition of Fusion, we adopted
several object-oriented features. Deliverables were
considered objects, with attributes and methods.
Evolution during software development was
represented by object interactions.

This article describes a framework that focuses on
flexibility, which makes adaptation of the method
easy. We will discuss an object-oriented approach to
the development process based on Fusion and our
experience with it.

Basic Features of an Object-Oriented
Process
1. Deliverables produced during software

development are considered objects with various
attributes and methods.

2. There is a strict distinction between the
deliverable and its representation. We use the
term model for the deliverable and diagram for its
representation if it can be represented graphically.
The model determines what information we work
with, and the diagram determines how it is
represented. A class model, for example, is
typically represented by one or more class
diagrams. A use-case model, however, can be
represented by a use- case diagram, a list of use-
cases (text), use-case schemes, text describing
sample scenarios, and so on. A system interaction
model can be represented by one or more
sequence diagrams, collaboration diagrams, state
diagrams, in Backus-Naur form (Fusion life
cycle), and so on. For each class of deliverable,
there is a recommended type of representation.

3. Each increment (a small piece of functionality
added to the existing product) is defined by a
single deliverable called a task context document,
which corresponds to a task in Microsoft Project.
The task context document contains general
information about the increment, such as a
synopsis, requirements, metrics (time estimates),

responsible developers, and so on . See Figure 1.
for a complete list of attributes. The task context
document exists throughout the entire life cycle of
the increment (from the requirements analysis to
implementation and testing). The development
phase of the increment is represented as a value of
one of the attributes of the task context document.

Classes of Deliverables
Classes of deliverables determine behavior,
semantics, and relationships of concrete deliverable
instances (objects). Classes of deliverables have:

· Constructors, which are methods describing how
to create a deliverable

· Quality-assurance methods, such as
completeness and consistency checks

Examples of two deliverable classes, the abstract
deliverable and the task context are shown in
Figure 1.

Deliverables have numerous attributes:

· Kind, which determines deliverable class
· Name
· Description, typically UML diagram or text
· References to other deliverables, for example a

use-case model is related to one or more system
interaction models

· Project
· Subsystem
· Task context
· Responsible developer
· Other attributes, such as who created and

modified the deliverable and when

Kind and name together are the key that uniquely
identifies the deliverable in the data dictionary.
Concrete deliverable classes specify methods and can
include other specific attributes. An inheritance
diagram of deliverable classes is illustrated in
Figure 2. Typical relationships between deliverables
are illustrated in Figure 4. The development process
is illustrated in Figure 3.

Note that design deliverables may relate to more than
one task context document. For example, different
developers or teams may work with the same class
model in the context of different increments or, more

2

typically, the same class model may be reused within
different increments.

Experience with the Process
We have used our modified process in several
projects since the summer of 1996. We used Visio as
a drawing tool and Lotus Notes as a repository for
project deliverables as well as the data dictionary.
The main benefit of using these tools was flexibility –
in notation, in the kinds of deliverables in the
repository and in the possibilities provided for
modifying the process according to the size and
character of the task.

After half a year, we had about 350 documents in the
repository with the following distribution: task
context, 36%; note, 15%; use case model, 10%;
system interaction model, 14%; domain model, 4%;
operation model, 5%; object interaction model, 3%;
class model, 6%; class, 5%; and data types, 1%. The
relatively large number of task context documents
can be explained by the fact that some minor
increments were sufficiently defined by their task
context documents together with note documents and
did not need to aggregate a full set of analysis and
design deliverables.

The benefits of the object-oriented definition of the
software development process are:
· It is robust and easy to use. Small increments

typically result in a subset of deliverable classes:
task context, plan, source code, user
documentation and perhaps several design
documents. The quality-assurance methods
guarantee consistency between deliverables. With
larger increments, the number of kinds of
deliverables can be increased and always reflects
project state and any specific requirements .

· The process provides good management support
for incremental development. Each increment is
defined in a single document that exists
throughout the increment’s life cycle.

· The process is flexible and applicable to tasks
with a wide range of characteristics. By simply
defining or redefining the methods and attributes
of the deliverable classes, the process can be
easily adapted for use with different kinds of
projects.

· The process definition is applicable to different
solution frameworks and organization cultures.
For example, our organization is now
implementing Microsoft Solutions Framework,
which defines a team model, a process model and
an application model. Only minor changes
(mostly in terminology) are necessary in order to
make the change from the object-oriented Fusion
process to the MSF process model.

 Discussion - Other Approaches
 Other possible approaches to the process definition
are a workflow model and an object-oriented model
in which activities are objects, tasks are object
operations and deliverables are operation
postconditions.

 A workflow model separates activities and
deliverables. In general, such a definition cannot
cover all the possible combinations of activities and
deliverables without becoming overly complex. It is
an advantage that our definition focuses on the
deliverables and that the choice of appropriate
activity is left mostly up to the judgement of the
developer and depends on the specific situation.

 An object-oriented model with activities as objects is
already used in several methodologies, however, we
can see some potential problems:
· Quality issues. It is usually easier to define and

ensure the quality of a deliverable rather than the
quality of an activity.

· Usability issues. If you have to work with
incomplete information during the planning
phase, as is typically the case, it is usually easier
to determine which deliverables have to be
produced than to determine which activities will
lead to the creation of the deliverables.

· Fail-safe issues. If an activity is omitted in the
project plan, there is usually no warning during
the planning phase that something is missing. In a
deliverable-based approach, the quality-assurance
methods guarantee consistency between
deliverables.

Conclusions
We have described an object-oriented model for the
Fusion development process. The main artifacts of
our model are deliverables, which are modeled as
objects with constructors and quality-assurance
methods and a number of specific attributes. We have
described our experience with the model, which we
find flexible, robust and easy to use in general.

References
[1] Booch, G: Object Solutions, Addison-Wesley
Publishing Company, 1996
[2] Coleman, D. et al.: Object-Oriented
Development: the Fusion method, Prentice Hall 1994
[3] Hruby, P.: An Object Model for a Product Based
Development Process, ECOOP’97 Workshop on
Modeling Software Processes and Artifacts, 1997.
[4] Malan, R., Letsinger, R., Coleman, D.: Object-
Oriented Development at Work: Fusion in the Real
World, Prentice Hall 1996

3

Kind
Name
References // to other deliverables
Description / /UML diagram, text, prototype
Project
Subsystem
Task Context / /reference to the task context
File & Directory // if deliverable is code or test
Responsible Developer
Created by / when
Modif ied by / when

<<constructor>>
Procedure for how to create the deliverable

<<qual i ty-assurance>>
Criteria and/or procedure for how to assure
completeness, simple consistency, semantic
consistency, testing criteria, and so on

Deliverable
{abstract}

Synopsis
Requirements
Solution
Issues not covered
Motivation (benefits)
Consequences (costs)
Target group (stakeholders)
Breakdown
Metrics (t ime estimates for al l phases)
Comments

<<constructor>>
1. Brainstorm, or obtain suggestions for
requirements
2. Identify stakeholders
3. Modify the task context document in the l ight
of stakeholder analysis

<<qual i ty-assurance>>
Document is complete in the l ight of
stakeholder analysis

Task Context
{superclass = Deliverable}

Fig. 1. Class specifications for the Deliverable and Task Context classes. The Task Context class is inherited from
the Deliverable class; therefore it also contains all methods and attributes of the Deliverable class.

{abstract}
Deliverable

Task Context
{abstract}

Data Dictionary
Entry

ResponsePlan

Use Case Model

Class Model Note

. . .

{ incomplete}

Review

System
Interaction

Model

Object
Interaction

Model

Operation Model

Fig. 2. The inheritance diagram illustrating classes of deliverables used in the development process. The fact that the
inheritance tree is incomplete allows for flexibility throughout the process and for exact matching of project
deliverables to different kinds of processes. The Data Dictionary Entry class has abstract methods defined in derived
classes.

4

Task Context

Use Case Model

System
Interaction

Model
Domain Model

Operation Model

Object
Interaction

Model

Class Model
{dependencies}

Class Model
{visibility

information}

Class

Code
Test

{document and
scripts}

User
Documentation

Class diagram
with packages or
components

Class diagram
with dependency
relationships

Responsibi l i t ies and
collaborators, as in a
CRC class card.
State diagrams or
Backus-Naur Form for
contracts (interfaces).

General information
about the context of the
increment, including
metr ics (t ime and
complexity est imates).

One or more:
* Use case diagram
* Use case scheme
* Sample scenarios (text)

One or more:
*Sequence diagram
*Collaboration diagram
*State / Activity diagram
*Backus-Naur Form

Operation with
precondit ions and
postcondit ions

One or more:
*Collaboration
 diagram
*Sequence diagram

Class diagram with
associat ions and
aggregations,
specifying
premanent or
dynamic rererences,
l i fetime binding,
mutabil i ty,
multiplicity,
ordering and so on

Descript ion and
design of the test

Class Model
{ inheritance
information}

Class diagram with
inheritance relationships

Class diagrams;
refinement of the
same model

Fig. 3. Typical dependencies between deliverables (design process). Relationships do not necessarily determine the
time sequence in which the documents are created. For example, deliverables of the Class class are established
during the early phases of development but initially contain only responsibilities; the more complete description,
which includes contracts, method signatures, and so on is determined during the design phase from the class model
and the interaction model. The graph does not illustrate the design phases because the problem of the design phases
is slightly more complicated. For example, if an increment is a new component inside of the product, then the
operation model is part of the analysis because preconditions and postconditions are an important part of what the
system does. If the increment has an interface to the user, then the operation model is part of the design because the
user is typically satisfied with use cases or system interaction models and does not care about preconditions and
postconditions. Furthermore, many deliverables are established in one phase but completed in another phase. Design
phases are important, but they are better defined by what information the model contains, rather than by which
deliverables are produced.

5

Use Case Model

System
Interaction

Model
Domain Model

Class ModelOperation Model

Class

Test

Task Context

Object
Interaction

Model

Note

Data Types

All Entries

Fig. 4. References between analysis and design deliverables. Relationships are navigable in both directions. The
figure illustrates only typical relationships; in principle, a deliverable can have bidirectional links to any other
document or documents in order to enable maximal flexibility. For example, the object interaction model was often
broken down into another object interaction model, or some tasks did not require the use of an operation model and
links were directed to a system interaction model instead.

