
<<UML>>’98

- 1 -

Structuring Design Deliverables with UML

Pavel Hruby

Navision Software a/s
Frydenlunds Allé 6

+45 45 65 50 00
+45 45 65 50 01

ph@navision.com

Abstract
The idea of using Unified Modeling Language (UML) appeals to people, but actually using it can be challenging.
Many would like to use UML for software development, but do not know how to structure design models and what
the relationships between various UML diagrams are. This paper introduces a simple structure for design
deliverables that can be used for software development with UML. The structure is based on a pattern of four models
describing classifier relationships, interactions, responsibilities and state machines. The pattern can be applied to
different levels of abstraction and to different views on a software product. The paper also discusses practical
considerations for documenting software design in the project repository as well as cases in which UML may not be
the most appropriate notation to use.

Keywords
Project repository, UML, Deliverable

1. Motivation
To define the behavior of your system, some methods suggest describing scenarios, and other methods suggest
creating sequence diagrams. What is the correct approach? To answer this question, we must realize that there is a
difference between a design deliverable and its representation. The deliverable determines the information about the
software product, and the representation determines how the information is presented. For example, a state model
can be represented by a statechart diagram, an activity diagram or a state transition table. The system behavior
mentioned above is determined by the system interaction model, the subsystem interaction model or the object
interaction model. In UML, each of these models can be represented by a set of sequence diagrams or a set of
collaboration diagrams.

Useful design documentation is based on precisely defined deliverables1, rather than on diagrams. This paper
introduces a simple structure of design deliverables that traces design information. It can easily be extended to cover
all interesting information about the design of the product.

2. A Pattern of Four Deliverables
Software products can be described at various levels of abstraction and from various views. Some examples of levels
of abstraction are the system level, the architectural level and the class level. Some examples of views are the logical
view, the use case view and the implementation view. At each level of abstraction and in each view, the software
product can be described by four artifacts: static relationships between classifiers, dynamic interactions between
classifiers, classifier responsibilities and classifier state machines. Each of these artifacts can be represented either by
UML diagrams or by text. The pattern is illustrated in Fig. 1.

The models in Fig. 1 represent types of deliverables. They define the structure and the relationships of deliverable
instances, which contain the actual information about the software product. A model can consist of a large number of
deliverable instances. For example, a class model can consist of several static structure diagrams, each of them
representing small parts of a system structure; a system interaction model can consist of many interaction diagrams
describing various usage scenarios. See reference [3] for more information about object-oriented deliverable models.

1 A deliverable is a piece of information about a software product. A deliverable has a representation, properties,
responsibilities, attributes, methods and relationships to other deliverables. See also reference [3].

<<UML>>’98

- 2 -

System Level

Use Case
View

Logical
View

Architectural Level

Class Level

Procedural Level

Classifier Model

Classifier State
Model

Classifier
Interaction Model

Classifier

*0..1

*
* *

*

1 *

. . .

. . .

Fig. 1. At each level of abstraction and in each view, the software product can be described by four deliverables.
UML classifiers are class, interface, use case, node, subsystem and component.

The classifier model specifies static relationships between classifiers. The classifier model can be represented by a
set of static structure diagrams (if classifiers are subsystems, classes or interfaces), a set of use case diagrams (if
classifiers are use cases and actors), a set of deployment diagrams (if classifiers are nodes) and a set of component
diagrams in their type form (if classifiers are components). The classifier model can also be represented by tables
(see section 7 for details).

The classifier interaction model specifies interactions between classifiers. The classifier interaction model can be
represented by interaction diagrams: sequence diagrams or collaboration diagrams. The UML Notation Guide
describes only interaction diagrams in which classifiers are objects; it does not describe interaction diagrams in
which classifiers are use cases, subsystems, nodes or components. These diagrams are discussed in section 6 of this
paper.

The deliverable called classifier specifies classifier responsibilities, roles, and static properties of classifier interfaces
(for example, a list of classifier operations with preconditions and postconditions). Classifiers can be represented by
structured text, for example, in the form of a CRC card.

The classifier state model specifies classifier state machine and dynamic properties of classifier interfaces (for
example, the allowable order operations and events). The classifier state model can be represented by a statechart
diagram, an activity diagram, a state transition table and Backus-Naur form (see reference [7]).

An instance of the classifier model can be linked to several instances of the classifier interaction model. All of these
instances are linked to instances of the classifier. An instance of the classifier is linked to an instance of the classifier
state model.

3. Applying the Pattern
Figs. 2 and 3 show the pattern applied in use case, logical, component and deployment views, because UML is
intended preferably to be used in these areas. In Figs. 1, 2 and 3, the product is described at four levels of abstraction:
the system, architectural, class and procedural levels. Section 5 discusses application of the pattern at several other
levels of abstraction and views on the software product.

The system level describes the context of the system. The system level specifies responsibilities of the system being
designed and responsibilities of the systems that collaborate with it; responsibilities of physical devices and software
modules outside the system; and static relationships and dynamic interactions between them and the system being
designed. The architectural level describes subsystems, software modules and physical devices inside the system
and their static relationships and dynamic interactions. The class level describes classes and objects, their
relationships and interactions, and the procedure level describes procedures and their algorithms. Many large
systems have additional abstraction levels, which, for the sake of simplicity, are not shown in Figs. 1, 2 and 3. For
example, systems with layered architecture have an extra tier level between the system level and the architectural
level. The tier level specifies system layers, their relationships and interactions. In a layered system each layer
contains subsystems and components, which are specified at the architectural (subsystem) level. Some development
processes also require one or more levels of analysis models for identifying requirements.

<<UML>>’98

- 3 -

Logical View Use Case View

Subsystem Model

Subsystem State
Model

Subsystem
Interaction Model

Class Model
Object Interaction

Model

Class Class State Model

Subsystem

System
Use Case Model

System Use Case
Interaction Model

System
Use Case Activity

Model

Procedure Activity
Model

Procedure

System Use Case

Source Code

«ref ine»

System
System State

Model

System Model
System Interaction

Model

Subsystem
Use Case Model

Subsystem Use
Case Interaction

Model

Subsystem Use
Case Activity

Model

Subsystem
Use Case

Class Use Case
Model

Class Use Case
Interaction Model

Class Use Case
Activity Model

Class
Use Case

«ref ine»

«ref ine»

«ref ine»

«ref ine»

«realize»

S
ys

te
m

 L
ev

el
A

rc
hi

te
ct

ur
al

 L
ev

el
C

la
ss

 L
ev

el
P

ro
ce

du
ra

l
Le

ve
l

C
od

e
Le

ve
l

«ref ine»

«instance»

«realize»

«instance»

«ref ine»

«realize»

«collaborations»

«collaborations»

«collaborations»

«instance»

Fig. 2 Deliverables describing the software product in use case and logical views.

As an example, the text in the following paragraphs describes deliverables and their relationships at the
architectural level. At all other levels of abstraction, the pattern is applied in a very similar way. The only exception
is the procedural level, which does not contain the procedure model (relationships between procedures) or the
procedure interaction model (interactions between procedures). The reason for the absence of models is the
principle of object-oriented design, in which the class model and the object interaction model substitute procedure
relationships and procedure interactions respectively.

The subsystem model, subsystem component model, and subsystem node model specify static relationships between
subsystems, software modules and physical devices inside the system.

The subsystem use case model describes use cases with subsystem scope and their relationships to collaborating
subsystems. The subsystem use case model specifies how the subsystem, its software modules and physical devices
collaborate2 with other subsystems or external actors. The dependency with the stereotype «collaborations» in Figs. 2
and 3 indicates that the use case model specifies collaborations of subsystem, component and node.

2 UML 1.1 does not have a symbol for collaboration. Therefore, in this article I assume that collaborations are
specified by use cases.

<<UML>>’98

- 4 -

The subsystem interaction model, subsystem component interaction model and subsystem node interaction model
describe interactions between subsystems, interactions between software modules and interactions between nodes
inside the system. The dependency with the stereotype «instance» in Figs. 2 and 3 indicates that interactions
specified in these models are instances of subsystem use cases.

The deliverables subsystem, component and node specify responsibilities of subsystems, software modules and
physical devices inside the system. These deliverables also specify their own roles and static properties of their
interfaces (for example, a list of operations and events). A dependency with the stereotype «refine» indicates that the
deliverables class model, object interaction model, class state model and class, represent detailed design of the
subsystem.

The subsystem state model, subsystem component state model and subsystem node state model specify behavior of
subsystems, software modules and physical devices inside the system. In particular, they specify dynamic properties
of their interfaces, for example, the allowable order of their operations and events.

Component View

Subsystem
Component Model

Subsystem
Component

Interaction Model

Subsystem
Component State

Model

Subsystem
Component

System
Component Model

System
Component

Interaction Model

System
Component
State Model

System
Component

«ref ine»

Deployment View

Subsystem
Node Model

Subsystem Node
Interaction Model

Subsystem Node
State Model

Subsystem Node

System
Node Model

System Node
Interaction Model

System Node State
Model

System Node

«ref ine»

S
ys

te
m

 L
ev

el
A

rc
hi

te
ct

ur
al

 L
ev

el

System Use
Case

«instance»

«instance»

«realize»
«realize»

Subsystem Use
Case

«instance»

«instance»

Use Case View

System
Use Case Model

«collaborations»«collaborations»

Subsystem
Use Case Model

«collaborations»«collaborations»

Fig.3. Deliverables describing the software product in component and deployment views.

The subsystem use case describes responsibilities of a use case with subsystem scope. This deliverable specifies
static properties of the use case, for example, use case goal, pre- and postconditions, list of subsystem operations that
are called within this use case, or a list of objects and attributes that are accessed or modified by the use case. The
dependency with the stereotype «instance» indicates that interaction models at the subsystem level represent
instances of the subsystem use case. The dependency with the stereotype «realize» indicates that a cluster of four
deliverables at the class level represents realization of the subsystem use case.

The subsystem use case activity model specifies behavior of the subsystem within the scope of the use case. The
subsystem use case activity model specifies subsystem state transitions and the allowable order of subsystem
operations and events, which are relevant for this use case. The use case activity model can divide potentially
complex state models of the subsystem into several state models of subsystem use cases, which can be simpler. The
scope of the use case activity model is limited to a particular use case, in contrast to the subsystem state model,
which completely describes the behavior of the entire subsystem. Another difference is that the subsystem state
model is associated with the subsystem, while the use case activity model is associated with the use case.

Some methodologists suggest that activities in the system use case activity model can be associated with subsystem
use cases. This suggestion does not entirely reflect the spirit of UML. However, if we accept the suggestion, then the
system use case activity model can specify the allowable order of subsystem use cases. In other words, it can specify
a scenario consisting of subsystem use cases.

<<UML>>’98

- 5 -

The subsystem use case interaction model specifies typical sequences of use case instances. In contrast to the
subsystem, component and node interaction models, where a scenario is described as a sequence of messages, the use
case interaction model describes the scenario as a sequence of use cases. This model is the only UML deliverable
that can describe a scenario consisting of other scenarios. This deliverable also differs from the use case activity
model. The use case activity model completely describes the subsystem behavior within the use case, and it is related
to the subsystem use case. The use case interaction model describes only typical scenarios, consisting of subsystem
use cases, and it is related to the subsystem use case model. There are more details about the use case interaction
model in section 6.2.

The UML system of diagrams is not orthogonal. In other words, the same information can be specified in two or
more different UML diagrams. For example, both the static structure diagram and the object collaboration diagram
specify relationships between objects, and both statecharts and interaction diagrams specify messages between
objects. Because the same information can be specified in several places, models either have to be checked for
consistency, or users must produce only a certain subset of the deliverables identified in Figs. 2 and 3. In the latter
case, it is quite important to specify clearly which deliverables are produced and which aspects of the system are
documented. It is particularly important in the case of simple software products, which are often described
sufficiently using only several of the deliverables discussed in this section.

Logical ViewUse Case View

Subsystem Model

Subsystem State
Model

Subsystem
Interact ion Model

Class Model
Object Interact ion

Model

Class Class State Model

Subsystem

System
Use Case Model

System Use Case
Interact ion Model

System
Use Case Act iv i ty

Model

Procedure Act iv i ty
ModelProcedure

System Use Case

Source Code

«ref ine»

System System State
Model

System Model
System Interact ion

Model

Subsystem
Use Case Model

Subsystem Use
Case Interact ion

Model

Subsystem Use
Case Act iv i ty

Model

Subsystem
Use Case

Class Use Case
Model

Class Use Case
Interact ion Model

Class Use Case
Activity Model

Class
Use Case

«ref ine»

«ref ine»

«ref ine»

«ref ine»

S
ys

te
m

Le
ve

l
A

rc
hi

te
ct

ur
al

Le
ve

l
C

la
ss

 L
ev

el
P

ro
ce

-
du

ra
l

Le
ve

l

C
od

e
Le

ve
l

«ref ine»

Component View

Subsystem
Component Model

Subsystem
Component

Interact ion Model

Subsystem
Component State

Model

Subsystem
Component

System
Component Model

System
Component

Interact ion Model

System
Component
State Model

System
Component

«ref ine»

Deployment View

Subsystem
Node Model

Subsystem Node
Interact ion Model

Subsystem Node
State Model

Subsystem Node

System
Node Model

System Node
Interact ion Model

System Node State
Model

System Node

«ref ine»

Class Node Model
Class Node

Interact ion Model

Class Node
Class Node State

Model

Class Component
Model

Class Component
Interact ion Model

Class Component
Activity Model

Class
Component

«ref ine» «ref ine»

« ins tance»

« ins tance»

« ins tance»

«real izat ion»

«real izat ion»

«real izat ion»

A B C

Fig.4. Several ways how to simplify the structure by joining closely related deliverables.

The system of deliverables discussed in this section can be simplified in various ways. Typically, instances of
deliverables are separate documents. However, there might be pragmatic reasons for creating documents containing
several closely related deliverables. For instance, classifier responsibilities and state machines are always related
together and can be joined into one document (Fill pattern A in Fig.4). It is also possible to join system, subsystem
and class use case models to one use case diagram (Fill pattern B in Fig.4), providing that use case levels and
relationships between use cases and other deliverables are clearly distinguished. Similarly, component and node
models at all levels can be joined into one implementation diagram document, providing that levels of components
and nodes are distinguished. It might also be reasonable to create one static structure model within each level and
show static relationships between use cases, actors, subsystems, classes, components and nodes in one diagram (Fill
pattern C in Fig.4), although the UML Notation Guide does not mention such a combined static structure diagram.

<<UML>>’98

- 6 -

4. Structuring Design Deliverables
In well-structured design documentation, the required information about software products can be easily located and
closely related information is linked together. It also gives an overview about the completeness of the documentation
and consistency between deliverables. This section proposes three rules that help to structure project deliverables in
an efficient way. The rules are based on the relationships between the deliverables identified in sections 2 and 3.

The first rule is that relationships among the four deliverables in the pattern, shown in Fig. 1 are the closest
relationships between deliverable instances. For example, an instance of the class model is linked to several instances
of the object interaction model. All of them are linked to several instances of the class, and each instance of the class
is linked to an instance of the class state model. Structuring deliverables in this way provides an overview of the
product within the scope of the level of abstraction and the view. However, this rule is not sufficient in cases in
which some of the models consist of large numbers of deliverable instances. In such cases, the following two rules,
which describe relationships crossing levels of abstraction and views, must be applied.

The second rule structures deliverables according to collaborations. These relationships are shown in Fig. 2 and Fig.
3 as dependencies with the stereotypes «instance», «realize» and «collaborations». In Fig. 5, these dependencies are
refined to associations because associations are more descriptive than dependencies. For example, the system use
case model contains a package of use cases. This package is linked to the deliverable system, which specifies the
system responsibility in the scope of this use case package. Responsibility of each use case in the package is
specified in the use case. Instances of these use cases are shown in the system interaction model, and their
realizations are specified in the logical, implementation and deployment views as a cluster of four deliverables at the
architectural level. Structuring deliverables according to collaborations (their relationships to a use case) is useful for
understanding the system functionality in a particular context.

System
Interaction

Model

System

System
Use Case

Model

System
Use Case

S
ys

te
m

 L
ev

el
A

rc
hi

te
ct

ur
al

Le
ve

l

Use case
instance

collaborations

Use case
realization

*

1

0..1

0..1

0..1

1

responsibil ity

Use case
responsibil ity

System
responsibil ity

System

Use case

System Responsibi l i ty

System Use Case Model

System Use Case

Subsystem Model

Subsystem Interact ion Model

Subsystem Responsibi l i ty

Subsystem State Model

System Interact ion Model

System responsibi l i ty
in the scope of the
Use Case Package

Instance of the
System Use Case

Real izat ion of the
System Use Case

System Col laborat ions

Package of System Use Cases

Fig. 5. Structuring deliverables according to collaborations specified in the use case model. Associations between
deliverables are on the left and an example of their projection is on the right.

Structuring deliverables according to collaborations can make it difficult to see the overall structure and functionality
of the system, component or class. Therefore, the third rule structures design deliverables according to their
refinement between levels of abstraction. These relationships are shown in Fig. 2 and Fig. 3 as dependencies with a
stereotype «refine», and in Fig. 6 these dependencies are refined to associations between deliverables. For example,
system responsibilities and system interfaces are defined in the deliverable system. The subsystem model specifies
the static structure of the system, and the subsystem interaction model specifies the design of each operation in the
system interface in terms of subsystem interactions. The dependency «conform» indicates that the operation design
has to match the dynamic properties of the system interface specified in the system state model.

<<UML>>’98

- 7 -

«conform»

System State
Model

Subsystem Model
Subystem

Interaction Model

System

S
ys

te
m

Le
ve

l

A
rc

hi
-

te
ct

ur
al

Le
ve

l

System
operation

Operat ion
Realization 1

1

Static
Structure 1..*

1..*Responsibil i ty

System Operat ion

Subsystem Model

Subsystem State Model

Subsystem Responsib l i ty

System Ref inement

System Responsib i l i ty

Subsystem Interact ion Model

Fig. 6. Structuring deliverables according to their refinement between levels of abstraction. Associations between
deliverables are on the left and an example of their projection is on the right. Components and nodes can be
structured in the same way.

All three rules, relationships within the view and level of abstraction, collaborations and refinement between levels
of abstraction can be combined if a project repository uses these rules as indexes. If project documentation is saved
in a version control system with a single index, or, if the documentation is paper based, then a designer must choose
one of these rules. Typically, it is useful to structure high-level documents according to the collaborations and low-
level documents according to their refinements.

5. Other Applications of the Pattern
The pattern can be applied in different areas to describe various aspects of the system. This section discusses
application of the pattern at the domain level, in analysis models, in designing software tests and in designing user
documentation.

5.1. Domain Level Models and Analysis Models
The domain level describes the problem domain in terms of domain objects and their interactions. The domain level
contains the domain model (relationships between domain objects), the domain object interaction model (interactions
between domain objects) and responsibilities and state machines of domain objects. Domain use cases are use cases
with “organization” scope (see reference [1]). Models at the domain level are usually refined into models at the
system or subsystem level.

Logical View Use Case View

Domain
Use Case Model

Domain Use
Case Interaction

Model

Domain
Use Case

Activity Model

Domain Use
Case

Domain Object
Domain Object

State Model

Domain Model
Domain Object

Interaction
Model

D
om

ai
n

Le
ve

l «instance»

«collaborations»

Fig. 7. Deliverables at the domain level.

The same idea can be used to produce analysis models at the system, the subsystem and possibly even the class
levels (see reference [2]). Analysis models do not specify the design of the product, their main purpose is to identify
the requirements for the product. Analysis models contain analysis objects, their interactions, responsibilities and
state machines. Analysis models are typically refined into the models in the logical view, shown in Fig. 2. However,
they can also be refined into the implementation models shown in Fig. 3.

5.2. Testing
The pattern can be used for designing tests. Deliverables in the test view are the test model (static relationships
between tests), the test interaction model (interactions between tests), the test case (description of the test), and the
test algorithm (test activity model describing the test algorithm). Test deliverables can be described at various levels
such as the test suite level, the test level and the test script level. Deliverables at the test suite level are the test suite

<<UML>>’98

- 8 -

(a set of tests), the test suite activity model (the sequence of tests run within a test suite), test suite model (static
relationships between test suites) and the test suite interaction model (interactions between test suites). The
dependency with the stereotype «trace» in Fig. 8 indicates that test cases can be based on use cases.

Test Suite
Activity Model

Test Model
Test Interaction

Model

Test Case Test Algorithm

Test Suite

«ref ine»

T
es

t L
ev

el

Test View

Use Case
«trace»

Test Script

«ref ine»

S
cr

ip
t

Le
ve

l

Use Case View

T
es

t S
ui

te
Le

ve
l

Fig.8. Deliverables for test design.

5.3. User Documentation
The pattern can be used for designing online user documentation. Documents (pages in online Help or Internet
pages) are shown as stereotyped components in UML. Deliverables for designing user documentation are the
document model (static relationships between documents), the document interaction model (typical scenarios that
arise in searching for particular information), responsibilities of documents (short descriptions of their purpose and
contents) and document state model (if the document has behavior). Deliverables for user documentation can also be
described at various levels: the book level, the document level and the text level.

Document
Model

Document
Interaction

Model

Document
Responsibil i ty

Document State
Model

D
oc

um
en

t L
ev

el

Text

«ref ine»

T
ex

t
Le

ve
l

Fig. 9. Design of user documentation.

5.4 User Interface
The pattern can be used for designing user interface. Screens (windows) can be shown as stereotyped classes in
UML. Deliverables for designing user interface are the screen model (static relationships between screens), the
screen interaction model (typical sequences of activation of screens), responsibilities of screens (with their drawings,
for example), and screen state model (if the screen has behavior). The dependency with the stereotype «instance» in
Fig. 10 indicates that screen interactions are instances of use cases.

<<UML>>’98

- 9 -

Screen Model
Screen

Interaction
Model

Screen
Screen State

Model

User Interface View

Use Case
«instance»

Use Case View

Fig.10. Deliverables for design of user interface.

6. Less Common UML Diagrams
Fig. 2 and Fig. 3 show several models that can be represented by UML, but diagrams of them are not explicitly
mentioned in the UML Notation Guide (see reference [5]). They are the use case interaction model, the subsystem
interaction model, the node interaction model and the component interaction model. These models can be
represented by sequence or collaboration diagrams in which classifier roles are use case, subsystem, node and
component roles.

In UML 1.1, classifier roles in sequence and collaboration diagrams are shown as objects. This might lead to
confusion in cases of interactions between classifiers of different kinds. For example, symbols on the collaboration
diagram, which represents interactions between the object, subsystem and component, are all shown as objects.
Sequence and collaboration diagrams would be easier to understand if an object symbol representing the classifier
role was replaced by the symbol of an actual classifier, as shown in Figs. 11 and 12.

6.1 Interaction Diagrams for Subsystem, Component and Node Interactions
Interaction diagrams for subsystem, component and node interactions are sequence and collaboration diagrams in
which classifiers are subsystem, component and node. These diagrams represent interactions between subsystem,
component and node instances, without it being necessary to specify actual objects that send or receive messages.
Fig. 11 shows a collaboration diagram representing interactions between objects and subsystems.

«actor»
User

Form
«subsystem»
Presentat ion

Object Manager

RowSet

«uti l i ty»
MS Windows

1.3: Update

«subsystem»
Database

1: PageDown
1.2: Update(Row)

1 .1 :Row=GetRow
1.2.1: Paint

Fig. 11. Collaboration diagram representing subsystem interaction model. The notation is modified UML. In
UML 1.1, all symbols are replaced by rectangles.

6.2 Diagrams for Use Case Interactions
Use case interaction diagrams are sequence and collaboration diagrams in which classifier roles are use case roles.
This type of diagram can represent scenarios consisting of sequences of use cases. An actor can use a system in a
way that initiates use cases in a particular order. Such a scenario – a sequence of use cases – can provide useful
information about the system, and it can be shown in use case interaction diagrams.

Please note that use cases in UML can interact only with actors and not with each other. Also, they are always
initiated by a signal from the actor. Therefore, the label invoke in Fig. 12 means that an actor can invoke a use case
while executing another use case. Invocations on the diagram map to signals from an actor to a use case and to static
relationships between use cases: generalizations «uses» and «extends», dependencies «invokes» and «precedes», or
constraints {invokes} and {precedes}.

<<UML>>’98

- 10 -

Please note that the complete behavior (not just scenarios) of a specific use case can be described in activity or state
diagrams in which states or action states map to subordinate use cases.

Company ships
an i tem

Customer
requests an i tem

Customer pays
for an item

Customer returns
an i tem

invoke

invoke

[customer not satisfied]: invoke

Company ships
an i tem

Customer
requests an i tem

Customer pays
for an item

Customer returns
an i tem

1: invoke

2: invoke
1.1 [customer not satisfied]: invoke

Fig. 12. Example of sequence and collaboration diagram representing use case interaction model. The notation is
modified UML. In UML 1.1, ellipses are replaced by rectangles.

7. Alternative Presentation Options
Design deliverables do not necessarily have to be described by UML. Practical alternatives to UML are Backus-Naur
form (BNF), tables and text. The choice of the representation depends on the problem being described, as well as
other circumstances such as who the intended reader is.

Backus-Naur form (BNF) (see references [2] and [7]) represents scenarios with one or two participants or a valid
order of operations of one classifier. Therefore, BNF is convenient for specifying interfaces. Fig. 11 shows an
interface with five operations, where the operation Create must be called first, and the operations Read, Write
and Print can then be called in arbitrary order. The operation Delete must be called last. A BNF expression of
this scenario is as follows: Create(); (Read() | Write() | Print())*; Delete(). In simple
cases, BNF expressions can be placed directly into the operation compartment of the class, as is shown in Fig. 13.

 «BNF»
 create() (
 read() I
 write() I
 print())*
 delete()

IPDDriver
{abstract}

Fig. 13. Allowable order of interface operations can be specified in Backus-Naur form.

Tables can describe relationships between classifiers, states or other entities that can have mutual relationships.
Although a diagram is a more user-friendly representation, a table is a good development tool and ensures that all
relationships between entities have been considered. For example, a table describing relationships between classes
has class names in rows and columns and relationships between classes are specified in the table fields. State
transition tables are a presentation alternative to statechart diagrams or activity diagrams. Rows of state transition
table represent states, columns represent events and table fields contain conditions and actions of state transitions.

Structured or free text can be used to describe classifier responsibilities. Text can be structured in a way that is
similar to the way a CRC card is structured.

8. Systems of Deliverables of Other Development Processes
Depending on which aspects of software design they focus on, different UML-based development processes use only
certain subsets of the deliverables identified in section 3. This section compares the design deliverables of three
major development processes: the Objectory method, the Shlaer-Mellor method and the Fusion method.

Although the Objectory method (see reference [5]) specifies deliverables with a wide scope, from a product vision to
release notes and training materials, it is quite superficial in its specification of the structure of deliverables
containing information about the design of the software product. The deliverables are structured on use case, logical,
deployment, implementation and process views, and tier, architectural, and class levels. Deployment and
implementation views contain only component and node models and component responsibilities. All interaction
models are considered as a specific view called process view. The method produces only use cases at the system

<<UML>>’98

- 11 -

level; the method does not produce any state models with the exception of the use case activity model and the class
state model. The deliverables are structured according to their relationships to use cases (in other words, according to
their collaborations with external actors).

Logical ViewUse Case View

Subsys tem Mode l

Subsys tem Sta te
M o d e l

Subsys tem
Interact ion Model

C lass Mode l Object Interact ion
M o d e l

Class Class Sta te Model

Subsys tem

S y s t e m
Use Case Mode l

Sys tem Use Case
Interact ion Model

S y s t e m
Use Case Act iv i ty

M o d e l

Procedure Act iv i ty
M o d e l

Procedure

Sys tem Use Case

Source Code

«re f ine»

S y s t e m
System Sta te

M o d e l

Sys tem Mode l System In teract ion
M o d e l

Subsys tem
Use Case Mode l

Subsys tem Use
Case Interact ion

M o d e l

Subsys tem Use
Case Act iv i ty

M o d e l

Subsys tem
Use Case

Class Use Case
M o d e l

Class Use Case
Interact ion Model

Class Use Case
Act iv i ty Model

Class
Use Case

«re f ine»

«re f ine»

«re f ine»

«re f ine»

S
ys

te
m

Le
ve

l
A

rc
hi

te
ct

ur
al

Le
ve

l
C

la
ss

 L
ev

el
P

ro
ce

-
du

ra
l

Le
ve

l

C
od

e
Le

ve
l

«re f ine»

Component View

Subsys tem
Componen t Mode l

Subsys tem
Componen t

In teract ion Model

Subsys tem
Component S ta te

M o d e l

Subsys tem
Componen t

S y s t e m
Componen t Mode l

S y s t e m
Componen t

In teract ion Model

S y s t e m
Componen t
Sta te Mode l

S y s t e m
Componen t

«re f ine»

Deployment View

Subsys tem
Node Mode l

Subsys tem Node
Interact ion Model

Subsys tem Node
Sta te Mode l

Subsys tem Node

S y s t e m
Node Mode l

Sys tem Node
Interact ion Model

Sys tem Node Sta te
M o d e lSys tem Node

«re f ine»

Class Node Mode l Class Node
Interact ion Model

Class Node
Class Node State

M o d e l

C lass Component
M o d e l

C lass Component
In teract ion Model

C lass Component
Act iv i ty Model

Class
Componen t

«re f ine» «re f ine»

« ins tance»

« ins tance»

« ins tance»

«rea l izat ion»

«rea l izat ion»

«rea l izat ion»

Fig. 14. Deliverables of Objectory method are shown in gray color.

Logical ViewUse Case View

Subsys tem Mode l

Subsys tem Sta te
M o d e l

Subsys tem
Interact ion Model

C lass Mode l
Object Interact ion

M o d e l

Class Class Sta te Model

Subsys tem

S y s t e m
Use Case Mode l

Sys tem Use Case
Interact ion Model

S y s t e m
Use Case Act iv i ty

M o d e l

Procedure Act iv i ty
M o d e l

Procedure

Sys tem Use Case

Source Code

«re f ine»

S y s t e m System Sta te
M o d e l

Sys tem Mode l
System In teract ion

M o d e l

Subsys tem
Use Case Mode l

Subsys tem Use
Case Interact ion

M o d e l

Subsys tem Use
Case Act iv i ty

M o d e l

Subsys tem
Use Case

Class Use Case
M o d e l

Class Use Case
Interact ion Model

Class Use Case
Act iv i ty Model

Class
Use Case

«re f ine»

«re f ine»

«re f ine»

«re f ine»

D
om

ai
n

Le
ve

l
A

rc
hi

te
ct

ur
al

Le
ve

l
C

la
ss

 L
ev

el
P

ro
ce

-
du

ra
l

Le
ve

l

C
od

e
Le

ve
l

«re f ine»

Component View

Subsys tem
Componen t Mode l

Subsys tem
Componen t

In teract ion Model

Subsys tem
Component S ta te

M o d e l

Subsys tem
Componen t

S y s t e m
Componen t Mode l

S y s t e m
Componen t

In teract ion Model

S y s t e m
Componen t
Sta te Mode l

S y s t e m
Componen t

«re f ine»

Deployment View

Subsys tem
Node Mode l

Subsys tem Node
Interact ion Model

Subsys tem Node
Sta te Mode l

Subsys tem Node

S y s t e m
Node Mode l

Sys tem Node
Interact ion Model

Sys tem Node Sta te
M o d e l

Sys tem Node

«re f ine»

Class Node Mode l
Class Node

Interact ion Model

Class Node
Class Node State

M o d e l

C lass Component
M o d e l

C lass Component
In teract ion Model

C lass Component
Act iv i ty Model

Class
Componen t

«re f ine» «re f ine»

« ins tance»

« ins tance»

« ins tance»

«rea l izat ion»

«rea l izat ion»

«rea l izat ion»

Fig. 15. Deliverables of Shlaer-Mellor method are shown in gray color.

The Shlaer-Mellor method (see reference [6]) has one of the best systems of deliverables. Unlike the system in Figs.
2 and 3, the deliverable system of the Shlaer-Mellor method is orthogonal, which means that one fact about the
product is stated only in one place. Analysis in the Shlaer-Mellor method (hereafter SM) is focused on the logical
view, and therefore the method does not produce any deliverables in use case, component and implementation views.

<<UML>>’98

- 12 -

The Shlaer-Mellor method does not produce any deliverables at the system level. The method recognizes an extra
domain level (see section 5) with the domain model (called domain chart in SM). At the subsystem level, the method
produces the subsystem model (subsystem relationship model and subsystem access model in SM), the subsystem
interaction model (subsystem communication model in SM) and the subsystem (subsystem description in SM). At the
class level the Shlaer-Mellor method produces the class model (object information model and object access model in
SM), the object interaction model (object communication model and thread of control chart in SM), the class (object
description in SM) and the class state model (state transition diagram and class structure chart in SM). At the
procedure level, Shlaer-Mellor produces the procedure (action specification in SM) and the procedure algorithm
(action data flow diagram in SM). Please note that the procedure (action specification) is related directly to the state
in SM and not first to the class and then to the state as it is in Fig. 2.

Logical ViewUse Case View

Subsys tem Mode l

Subsys tem Sta te
M o d e l

Subsys tem
Interact ion Model

C lass Mode l
Object Interact ion

M o d e l

Class Class Sta te Model

Subsys tem

S y s t e m
Use Case Mode l

Sys tem Use Case
Interact ion Model

S y s t e m
Use Case Act iv i ty

M o d e l

Procedure Act iv i ty
M o d e l

Procedure

Sys tem Use Case

Source Code

«re f ine»

S y s t e m System Sta te
M o d e l

Sys tem Mode l
System In teract ion

M o d e l

Subsys tem
Use Case Mode l

Subsys tem Use
Case Interact ion

M o d e l

Subsys tem Use
Case Act iv i ty

M o d e l

Subsys tem
Use Case

Class Use Case
M o d e l

Class Use Case
Interact ion Model

Class Use Case
Act iv i ty Model

Class
Use Case

«re f ine»

«re f ine»

«re f ine»

«re f ine»

S
ys

te
m

Le
ve

l
A

rc
hi

te
ct

ur
al

Le
ve

l
C

la
ss

 L
ev

el
P

ro
ce

-
du

ra
l

Le
ve

l

C
od

e
Le

ve
l

«re f ine»

Component View

Subsys tem
Componen t Mode l

Subsys tem
Componen t

In teract ion Model

Subsys tem
Component S ta te

M o d e l

Subsys tem
Componen t

S y s t e m
Componen t Mode l

S y s t e m
Componen t

In teract ion Model

S y s t e m
Componen t
Sta te Mode l

S y s t e m
Componen t

«re f ine»

Deployment View

Subsys tem
Node Mode l

Subsys tem Node
Interact ion Model

Subsys tem Node
Sta te Mode l

Subsys tem Node

S y s t e m
Node Mode l

Sys tem Node
Interact ion Model

Sys tem Node Sta te
M o d e l

Sys tem Node

«re f ine»

Class Node Mode l
Class Node

Interact ion Model

Class Node
Class Node State

M o d e l

C lass Component
M o d e l

C lass Component
In teract ion Model

C lass Component
Act iv i ty Model

Class
Componen t

«re f ine» «re f ine»

« ins tance»

« ins tance»

« ins tance»

«rea l izat ion»

«rea l izat ion»

«rea l izat ion»

Fig. 16. Deliverables of Fusion method are shown in gray color.

The Fusion method (see reference [2]) is a method with a succinct and consistent system of deliverables that is also
orthogonal and significantly simpler than Shlaer-Mellor. Fusion focuses on deliverables in the logical view at
system, subsystem and class levels. At the system level, Fusion delivers the system model (object model in Fusion),
the system interaction model (scenario in Fusion), the system (operation model in Fusion) and the system state
model (lifecycle model in Fusion). At the subsystem level, Fusion delivers only the subsystem model (system object
model in Fusion). At the class level, Fusion delivers the class model (visibility graphs and inheritance graphs), the
object interaction model (object interaction graphs) and the class (class descriptions in Fusion). Fusion does not
produce any state models except of the system state model (lifecycle model in Fusion). New Fusion Engineering
process (also known as Team Fusion) produces also use case model and use cases. Deliverables are structured
according to the refinement between levels of abstraction.

9. Summary
This paper introduced a pattern of four mutually related design deliverables that represent classifier relationships,
interactions, responsibilities and state machines. The pattern was applied for different levels of abstraction and for
different views on a software product. Application of the pattern helped to identify new interaction diagrams not
documented in the UML Notation Guide. They are the use case interaction diagram, the subsystem interaction
diagram, the node interaction diagram and the component interaction diagram. The paper outlined purpose,
relationships and representation of deliverables often used to document software design. The paper also discussed
three rules of structuring project deliverables based on: (1) relationships among the four deliverables in the pattern
(2) collaborations and (3) refinement between levels of abstraction. The pattern can be easily extended to document

<<UML>>’98

- 13 -

various aspects of software design. The paper discussed four of these aspects: domain and analysis models,
documentation of test design, design of user interface and design of online user documentation.

References
[1] Cockburn, A.: Using Goal-Based Use Cases, Journal of Object Oriented Programming, November 1997, also

available at http://members.aol.com/acockburn/papers/usecases.htm
[2] Coleman, D. et al.: Object-Oriented Development: The Fusion Method, Prentice Hall, Inc. 1994
[3] Hruby, P.: The Object-Oriented Model for a Development Process, OOPSLA97, also available at

http://www.navision.com/services/default.asp
[4] Rational Objectory Process 4.1, demo version, available at http://www.rational.com
[5] UML Notation Guide, version 1.1, Rational, 1 September 1997, also at http://www.rational.com/uml
[6] Shlaer, S., Mellor, S. J.: Object Lifecycles: Modeling the World in States, Prentice Hall, Inc. 1992
[7] Thibault, E.: What is BNF Notation? Available at

http://cuiwww.unige.ch/db-research/Enseignement/analyseinfo/AboutBNF.html

