
Framework for Describing UML Compatible
Development Processes

Pavel Hruby

Navision Software
Frydenlunds Allé 6

DK-2950 Vedbæk, Denmark
ph@navision.com

Abstract. Have you ever tried to specify an accurate development process for
your organization and later faced difficulties with the complexity of the
description? Instead of describing a specific process, it might help to describe a
process framework and reuse it by creating specific processes for specific
needs. This paper describes the object-oriented framework of a development
process, which considers software development artifacts as objects and
evolution as collaborations between the objects. Such an object-oriented
process definition can deal with the complexity of a development process in a
better way than a traditional description based on workflow. This paper
discusses features of such a process framework with an eye towards approaches
such as Fusion, OPEN and the Rational Unified Process.

Acknowledgement. I would like to thank to Prof. B. Henderson-Sellers of the School of
Computing Sciences, University of Technology, Sydney, Australia, for "shepherding" the
article, and for his useful suggestions and comments. I do, of course, take full responsibility for
any omission or errors.

1 Introduction

“The software development process, as actually performed, is so complex that we
cannot write it down accurately, and if we could, no one could read that description
and learn to perform it,” (Alistair Cockburn, panel discussion, ECOOP’98 [2]). In this
paper, this problem is solved in the following way. Instead of writing down a concrete
process scenario, we specify a process framework that describes all allowable
processes. Such a framework is abstract yet precise. To meet the demands of specific
development problems, the framework is reused by creating specific development
processes. The concrete development processes can be represented at the necessary
level of accuracy. This solution significantly simplifies the description of concrete
development processes, because the complexity is localized in the abstract form in the
process framework.

This paper is structured in the following way. The second section explains the
traditional specification of software development processes and its drawbacks. The
next four sections explain the main ideas of the object-oriented process specification,
and the structure of the object-oriented framework is outlined in the section 6: The
Object-Oriented Specification of Development Processes. The next section compares
the object-oriented specification with the original specification of three contemporary
design methods and methodological frameworks.

2 Traditional Specification of Software Development Processes

The purpose of this section is to clarify the terminology used throughout the paper
because different authors define these terms differently in different contexts.

The traditional specification of a development process is typically illustrated with a
graph of tasks, techniques, software development artifacts and activities. Tasks are
small behavioral units that usually result in a software development artifact. Examples
of tasks are construction of a use case model, construction of a class model and
writing of code. Techniques are formulas for performing tasks, for example, object
design using CRC cards, functional decomposition and programming in Visual Basic.
Software development artifacts are final or intermediate products resulting from
software development, for example, a use case model, a class model, or source code.
Activities (in this paper) are units that are larger than task units. Activities typically
include several tasks and software development artifacts. Examples of activities are
requirement analysis, logical design and implementation.

Software
Development

Artifact 1

Software
Development

Artifact 2
Task 1

Software
Development

Artifact 3

Task 2

Task 3

Software
Development

Artifact 4

Activity 1 Activity 2

Fig. 1. Traditional specification of a development process. It can be compared with the object-
oriented specification illustrated in Fig. 10

In general, the traditional specification of a development process cannot cover all
the possible combinations of activities and software development artifacts without
becoming overly complex. This paper will show that in the specification of
development processes, the object-oriented approach deals with complexity of the
development process better than the traditional approach illustrated in Fig. 1. This is
similar to experience from within software development, where the object-oriented
approach can deal with the complexity of large software solutions better than the
traditional structured approach.

3 Basic Features of the Product-Focused Object-Oriented Process
Specification

Software development and management artifacts produced during a software
development process are considered objects with various methods and attributes.
Evolution during software development is represented as collaborations between
software development artifacts, management artifacts and users of the method.

The object-oriented specification of the software development process
distinguishes between artifacts and their representations. A software development
artifact determines information about a software product. Examples of software
development artifacts are use cases, software architecture, object collaborations and
class descriptions. A management artifact determines information about a
management product, such as a project and a team. Software development artifacts
can be very abstract, such as the vision for the software system, or very concrete, such
as the source code. The representation determines how the artifact is presented. For
example, a use case model is represented by a use case diagram; a state model can be
represented by a statechart diagram, an activity diagram or a state transition table. The
object interaction model can be represented by a set of sequence diagrams or a set of
collaboration diagrams. Various design methods typically recommend a suitable
representation of each software development artifact. However, the choice often
depends on the concrete situation, and it is sometimes advisable to leave the final
decision about the representation to a user of the method.

An artifact has a representation, properties, responsibilities, methods, relationships
to other artifacts and attributes, all of which are discussed later. Consistency check,
process phase or technique, for example, are not called software development or
management artifacts in this article because they do not describe design of a software
or management product.

 Constructor
 Quality-assurance

«instance-specific attributes»
 Name
 Version
 Status
 Representation
 References to other artifacts
 Created / modified by / when

«type-specific attributes»
 Purpose
 Recommended representation
 Owner

Object Interactions
{supertype = Design Artifact}

•UML sequence diagram.
•UML collaboration diagram
•Creation chart (how
objects create each other)

1. Identify relevant objects
involved in interface operation
execution
2. Identify controller and
collaborators
3. Decide on messages between
objects
4. Draw an interaction diagram
for each interface operation

•Each class or package
in the artifact class
relationships appears in
the artifact object
interaction model.
•Scenario satisfies
postcondition of the
interface operation.

Interface operation
design in terms of
object interactions

Fig. 2. Specification of the artifact type object interaction model

The object-oriented specification of the development process distinguishes
between the artifact type and the artifact instance. Types of artifacts specify
properties, attributes and methods of various kinds of software development and
management artifacts. Instances of artifacts are concrete software development and

management products produced during software development. An example of a
software development artifact type is a use case model. An example of a software
development artifact instance is a concrete set of use cases, actors and their
relationships, represented by a use case diagram.

Artifact types have two kinds of methods:
• Constructors, which are methods describing how to create an artifact.
• Quality-assurance methods, such as completeness and consistency checks.

Artifacts have instance-specific attributes: name; version; representation, which
typically contains a diagram, a table or a text; status, such as draft, completed, tested;
references to other software development and management artifacts; and attributes
such as who created and modified the artifact and when. In addition, artifact types
have type-specific attributes: the purpose, the recommended representation and the
owner of the artifact type. Artifacts may have other additional attributes and methods
than those mentioned above. Fig 2. illustrates the object-oriented specification of a
software development artifact type with attributes and methods. The inheritance
diagram of the artifact types is in Fig. 3.

{incomplete}

{abstract}
Management

Artifact

Task

{abstract}
Software Development

Artifact
Comment Review

Project

Project Plan

Team

System
Interactions

Use Case
RelationshipsSystem Class

Relationships

Class
Lifecycle

System
Lifecycle

{abstract}
Artifact

Object
Interactions

Node
Interactions

Fig. 3. The inheritance diagram illustrating types of artifacts used by the development process.
The fact that the inheritance tree is incomplete allows for flexibility throughout the process and
for creating new artifacts to match different kinds of development processes

4 Static Structure of Software Development and Management
Artifacts

This section specifies the static relationships between software development and
management artifacts. The static structure is based on the pattern for structuring
project repositories with UML design artifacts [11]. This section outlines how the
pattern is applied to create a static structure of the framework for describing UML
compatible development processes.

A software system can be represented from various viewpoints and at various
levels of granularity, see Fig 4. Examples of views1 and levels of granularity are
discussed later. In each view and at each level of granularity, a UML compatible
system can be described by four artifacts: static relationships between classifiers2,
dynamic interactions between classifiers, classifier responsibilities and classifier
lifecycles.

The artifact called classifier relationships specifies static relationships between
classifiers. The artifact called classifier interactions specifies interactions (an instance
of a scenario) between classifiers. The artifact classifier identifies the classifier and
specifies classifier responsibilities and other static classifier properties, for example, a
list of classifier operations with preconditions and postconditions, and a list of
classifier attributes that can be read and set. The classifier lifecycle specifies classifier
state machine and dynamic properties of classifier interfaces, for example, the
allowable order operations and events.

System Level

Subsystem Level

Class Level

Classifier
Relationships

Classifier
Lifecycle

Classifier
Interactions

Classifier

*0..1

** *

*

1 *

Collaboration
View

Testing
View

Logical
View

Analysis
View

other views

ot
he

r
le

ve
ls

 o
f

gr
an

ul
ar

ity

Reuse
View

UML compatible
system

Fig. 4. At each level of granularity and in each view, the software product can be described by
four types of software development artifacts. Each software development artifact identifies
specific information about the software product (After ref. [10].)

Examples of views are the logical view, the collaboration view, the deployment
view and the analysis view. The logical view describes the logical structure of the
product in terms of subsystems and classes and their responsibilities, relationships and
interactions. The collaboration view identifies types of collaborations with actors of
the system, subsystems, classes, components and nodes. The deployment view

1 In this article, I use the term “views” to mean complete “slices” through a model of a software

system across different levels of granularity from various viewpoints. This meaning is
different from the term “view”, as used in reference [12], where it means a non-complete set
of significant elements.

2 Classifiers represent static entities in a system model. In UML, classifiers are class, object,
interface, datatype, use case, subsystem, component and node. Management artifacts, such as
team and project, are mapped to UML as stereotyped classes.

describes the physical structure of the system in terms of hardware devices and their
responsibilities, relationships and interactions. The analysis view describes the logical
structure of the product in terms of analysis subsystems, objects and their
responsibilities, relationships and interactions. The analysis view differs from other
views in the way that the software entities in the analysis view do not specify the
software system precisely. The purpose of the analysis view is to record preliminary
or alternative solutions to design problems, and to record requirements or user's view
of the system. Analysis objects may – but do not always – correspond to logical or
physical software entities existing in the product.

Examples of levels of granularity are the system level, the subsystem level and the
class level (see Fig. 4). The system level of granularity describes the context of the
software system. The system level specifies the responsibilities of the system being
designed and the responsibilities of the other systems that collaborate with it,
responsibilities of physical devices and software modules outside the system, and
static relationships, along with the dynamic interactions between them and the system
being designed. The subsystem level of granularity describes subsystems, software
modules and physical devices inside the system, along with their static relationships
and dynamic interactions. The class level of granularity describes the detailed design
of the subsystems in terms of classes and objects, and their relationships and
interactions.

The software product can be represented by additional views, such as the testing
view and the view of reusable elements. The software product can be specified at
additional levels of granularity, such as the tier level for systems with layered
architecture and the organizational level for business systems. At each additional
level of granularity and in each additional view, the software product is specified by
static relationships between classifiers, dynamic interactions between classifiers,
classifier responsibilities and classifier lifecycles. The semantics of these additional
software development artifacts are out of the scope of this paper. See paper [10],
Structuring Design Artifacts with UML, for details about these artifacts.

Classifier
Relationships

Classifier
Lifecycle

Classifier
Interactions

Classifier

*0..1

*
* *

*

1 *

Development Artifacts
Static Structure Diagram
Use Case Diagram
Deployment Diagram
Component Diagram

Management Artifacts
Organizational Chart
PERT Chart

Development Artifacts
CRC Card
Use Case Template

Management Artifacts
Text
Table

Development Artifacts
Sequence Diagram
Collaboration Diagram

Management Artifacts
Gantt Chart
Text

Development Artifacts
Statechart Diagram
Activity Diagram
State Table
Backus-Naur form (BNF)
Nassi-Schneidermann
Diagram

Management Artifacts
Text

Fig. 5. Typical representation of software development and management artifacts

As mentioned in section 3, the object-oriented model distinguishes between the
information itself (called software development or management artifact in this article)
and its representation. Software development artifacts can be represented by UML
diagrams, tables or text, see Fig. 5. The artifact classifier relationships is represented

by a UML static structure diagram, a use case diagram, a deployment diagram and a
component diagram, if classifiers are classes, use cases, nodes and components,
respectively. The artifact classifier interactions is represented by a UML sequence
diagram and a collaboration diagram. The UML Notation Guide describes only
interaction diagrams in which classifiers are objects; it does not describe interaction
diagrams in which classifiers are use cases, subsystems, nodes or components. These
diagrams are discussed in [10]. The artifact classifier is represented by a CRC card,
use case template, structured text or table. The artifact classifier lifecycle is
represented by a UML statechart diagram, activity diagram, a state table, a Backus-
Naur form and a Nassi-Schneidermann diagram.

Management artifacts can be represented by project diagrams, tables or text (see
Fig. 5). The artifact classifier relationships is represented by an organizational chart,
if the classifiers are roles or teams; or by a PERT chart, if the classifiers are tasks and
projects. Overeager UML users can use class diagrams, in which the classes have a
stereotype «task» and «project». The artifact classifier interactions is represented by a
Gantt chart if the classifiers are projects or by text if the classifiers are roles and
teams. The artifacts classifier and classifier lifecycle are represented by table or text.

C
la

ss
 L

ev
el

S
u

b
sy

st
em

 L
ev

el
S

ys
te

m
 L

ev
el

Collaboration ViewLogical View

Subsystem
Collaboration
Relationships

Subsystem
Collaboration
Interactions

Subsystem
Collaboration

Lifecycle

Subsystem
CollaborationSubsystem Subsystem

Lifecycle

 Subsystem
Relationships

Subsystem
Interactions

«instance»

«collaborations»

Class Class Lifecycle

Class
Relationships

Object
Interactions

«refine» «realize»

System
Collaboration
Relationships

System
Collaboration
Interactions

System
Collaboration

Lifecycle

System
CollaborationSystem

System
Lifecycle

 System
Relationships

System
Interactions

«instance»

«collaborations»

«realize»«refine» «refine»

Code

«refine»

Class
Collaboration
Relationships

Class
Collaboration
Interactions

Class
Collaboration

Lifecycle

Class
Collaboration

«refine»

«instance»

«collaborations»

Fig. 6. Static structure of software development artifact types at the system, subsystem and
class levels of granularity and in the logical and collaboration views (After ref. [10].)

Fig. 6 specifies the static structure of software development artifact types at three
levels of granularity and in the logical and collaboration views. Each software

development artifact type specifies certain information (discussed in paper [10]) about
the software system. The structure uses the pattern described above, and the result is a
regular structure, which allows consistent customization of the design specification.
In simple cases, the specification consists of only a small subset of the software
development artifacts identified in Figs. 5 and 6. Conversely, if software designers
have to specify something unusual or unexpected, such as the things not covered by
the method, the specification is extended by adding additional views and additional
levels of granularity.

R
o

le
 /

T
as

k
L

ev
el

T
ea

m
 /

P
ro

je
ct

L
ev

el

Project ViewTeam View

Project
Relationships
(PERT Chart)

Project
Interactions
(Gantt Chart)

Project
Lifecycle

ProjectTeam Team
Lifecycle

Team
Relationships

Team
Interactions

«instance»

Role
Role

Lifecycle

Role
Relationships

Role
Interactions

«refine» «realize»

Task
Relationships
(PERT Chart)

Task
Interactions
(Gantt Chart)

Task
LifecycleTask

«refine»

«assignment»

«assignment»

«instance»

Fig. 7. Static structure of management artifact types in the team and project views

Fig. 7 illustrates the application of the pattern for structuring management artifacts.
The pattern can be used to structure two kinds of management product: teams and
projects. Management artifacts can be shown as stereotyped classes in UML, such as
«team», «role», «project» and «task». The artifacts team relationships and role
relationships specify the organizational structure at two levels of granularity. The
artifact team specifies the responsibility of the team and the artifact role specifies the
role of the team member. Examples of roles are developer, program manager, product
manager, user education and logistics. The artifacts team interactions and role
interactions specify scenarios - interactions between teams and team members, which
are responses to various events. The artifacts project and task specify static properties
of projects and tasks. The artifact project relationships and task relationships specify
static relationships between projects and tasks. These artifacts can be represented by a
PERT chart. The PERT chart shows the task dependencies, which are the most
important static relationships between tasks. The artifact task interactions specifies a
project scenario in terms of starting and finishing tasks. Accordingly, the artifact
project interactions specifies the project scenario in terms of starting and finishing

projects. These artifacts are typically represented by Gantt charts, but they might be
represented by UML sequence diagrams as well. Gantt charts show the task
constructors, which are the most important messages between tasks.

It can be noted that every project generates a number of artifacts not captured by
the pattern. Examples of such artifacts are a glossary, minutes of meetings, reviews,
comments and notes. These artifacts do not describe a product, and therefore they
cannot be structured using the pattern. These artifacts can be related to any other
software development or management artifact. For example, the glossary is related to
the artifact system, the minutes of meetings are related to the artifact project. In order
to reuse them in a consistent way, they have specified types in the process repository.
They are illustrated, for example, in the inheritance diagram in Fig. 3.

5 Dynamics of Software Development Artifacts - Development
Processes

The previous section described the static structure of software development and
management artifacts. In the object-oriented specification of a development process,
evolution is seen as collaborations between artifacts, and between artifacts and
members of a development team. Software development artifacts can be created and
completed in various orders depending on the features of various design methods.
This section describes two typical examples of design processes: the Rational Unified
Process and the process of the Fusion method.

Processes of different development methods create different subsets of the software
development artifacts identified in the previous section, because different methods
focus on different aspects of software development.

5.1 Rational Unified Process

The object-oriented specification of the Rational Unified Process [12], [15] is
illustrated in Fig. 8. The figure illustrates the scenario of the requirements, analysis
and design workflows of the Rational Unified Process. The figure shows the evolution
of the software as a number of interactions between the worker (such as the system
analyst, the use case specifier, the architect and the designer) and the software
development artifacts of the Rational Unified Process.

A worker who uses the Rational Unified Process is responsible for calling the
constructors of the software development artifacts in the order illustrated in the Fig. 8.
Constructors and quality assurance methods generate various messages between the
objects.

«create»

System
Use
Case
Model

Use
Case

review

Worker

review

«create»

vision, glossary,
supplementary specifications

«create»

review

get vision

select architectural patterns

Subsystem
Model

Sub-
System

Class
Model Class

«create»

associations

«create»

supplement description

«create»

Deployment
Model

review

Process
Model

«create»

describe
concurency describe

distribution

reviewreview

refineget behavior

reviewreview

update

structure

describe in detail
«create» user interface model

«create» user interface prototype

to Code

refine interfaces

design data model

design

prioritize

review

design
mechanisms design

elements

«create»

Fig. 8. The process of the requirements, analysis and design workflows of the Rational Unified
Process

5.2 The Process of the Fusion Method

The object-oriented specification of the development process of the Fusion method
[3] is illustrated in Fig. 9. The figure illustrates the Fusion development scenario in
terms of interactions between software development artifacts, and between software
development artifacts and the developer.

The Fusion method, as described in reference [3], contains more details than the
Rational Unified Process 5.0, as described in reference [12]. For the sake of
comparison with the Rational Unified Process (to keep the Figs. 8 and 9 at the same
level of detail), Fig. 9 shows only high level interactions of the Fusion method. Note
that this figure is meant as an illustration of the idea, not as a detailed description of
the entire method.

Get generalizations and specializations

Get class
visibility

«create»

Analysis
System
Model

System System
Lifecycle

Object
Interaction

Model

Class
Model

Class
Code

(Source
File)

* «create»

Consistency

Get class
references

Update
Inheritance

Get class
methods

Get state machine definition

Developer
«create»

Consistency

Get class
description Review

Set system
operations

Get system operations

Consistency
«create»

«create»

«create»

Fig. 9. The design process of the Fusion method

6 The Object-Oriented Specification of Development Processes

This section describes the framework for an object-oriented specification of
development processes using the pattern of four artifacts discussed in section 4. The
structure of the process specification framework is illustrated in Fig. 10.

The artifact called artifact relationships specifies the static relationships between
software development and management artifacts. It can be represented by a UML
static structure diagram, where classes and objects have stereotypes, such as «class
relationships», «class lifecycle», «project» and «team». The artifact called artifact
interactions specifies the development scenario. This artifact can be represented by a
UML sequence diagram or a UML collaboration diagram. In the Rational Unified
Process [12] these scenarios are called workflows. The artifact called artifact type
specifies the purpose, constructor, quality assurance, and specific attributes of
software development and management artifacts. The artifact called artifact lifecycle
specifies the artifact states and the events that change the artifact state, such as
creation, completion and approval. The lifecycle shown in Fig. 10 is an illustrative
example; different software development and management artifacts have different and
often more complex lifecycles.

The artifact relationships are discussed in section 4 (“Static Structure of Software
Development and Management Artifacts”). The artifact interactions are discussed in
section 5 (“Dynamics of Software Development Artifacts”). The artifact types are

discussed in section 3 (“Basic Features of the Object-Oriented Process
Specification”).

Artifact
Relationships

Artifact
Lifecycle

Artifact
Interactions

Artifact
Type

Constructor
Quality Assurance

Name

Purpose
Representation
Template
References
Standard
Owner
Status
Audit Attributes
...

Draft

Completed

H

Approved

modify

modify

Fig. 10. Structuring the object-oriented specification of a development process

It can be noted, however, that the framework described in this article is not a so-
called document-based process. Document-based processes focus on the documents
delivered. The documents often have a form, which is well-defined by templates and
checklists. Document-based processes have a bad reputation, because the success of a
project has often been measured in terms of the documents being delivered on time.
For software projects, this encourages problems, such as bureaucracy, slow delivery
and requirements drift.

Many software development and management artifacts in the framework, such as
class lifecycle, are too small to be useful documents delivered separately, for
example, at a project milestone. For pragmatic reasons, software development and
management artifacts can be combined together to make useful documents. Examples
of such aggregated software development artifacts are in ref. [10].

The framework specified in this article can be characterized as information-
focused, rather than document-focused. Software development and management
artifacts are essentially pieces of information (see the artifact definition in section 3).
The framework strictly distinguishes between the information itself (called software
development or management artifact in this article) and its representation (called

deliverable or document in the traditional approach). Sometimes the information is
not represented physically and might exist only as a mental model. Even for such
artifacts, the framework concepts can be applied.

7 Comparison to Other Design Methods and Methodological
Frameworks

This section compares the original specifications of the Fusion method process, the
Rational Unified Process, the OPEN process and several process definition standards,
with the object-oriented specification of these processes.

The process of the Fusion method [3] is focused on software development artifacts,
rather than on activities. For each deliverable and milestone, the Fusion method
specifies how to construct the software development artifact and specifies the quality
checks for each software development artifact. It is therefore quite straightforward to
construct the object-oriented model for the Fusion method. The object-oriented
specification of the Fusion development process (object interactions are illustrated in
Fig. 9) has the following advantages over the original specification:
• The object-oriented model makes a distinction between the information itself and

its representation. This allows for the alternative representation of software
development artifacts in specific situations. For example, in contrast to the Fusion
original representation in Backus-Naur form, lifecycles can be specified by
statecharts or state tables.

• The object-oriented model allows for user-specific extensions and customization of
the method. The object-oriented specification guarantees that the extensions are
consistent with the original method. For example, developers might include
specifications of subsystem lifecycles, class lifecycles and use cases in the original
process. The object-oriented specification makes it easy to define relationships
between these new artifacts and the original Fusion deliverables.

• The object-oriented model allows for consistent mapping between management
artifacts and software development artifacts. In particular, the object-oriented
model defines relationships between software development artifacts and the project
and task, along with relationships between software development artifacts and the
team model, which specifies which team roles are responsible for which
deliverables.

The Rational Unified Process [12] is specified by a workflow model focused on
activities. The original Rational Unified Process 5.0 [15] is complex, but it is made
more manageable by viewing the process in different ways, such as by notation,
workflow, documentation, artifacts and workers. It is also made more manageable by
necessary configuration (adaptation) to meet specific needs. The on-line
representation of the process helps significantly in dealing with the complexity of the
process. The object-oriented specification of the Rational Unified Process (object
interactions are illustrated in Fig. 8) has the following advantages over the original
specification:

• The object-oriented model is simpler than the original one. If the set of artifacts
included in the demo version of the process is used, the same information is
described in 26 different documents in the demo version and in 11 documents in
the object-oriented specification. The demo version was available at Rational's
Web site during 1997-1998.

• The Rational Unified Process, rewritten in an object-oriented manner, provides a
consistent framework: it makes inconsistencies in the original process noticeable
and draws attention to missing information.

• Each artifact of the object-oriented specification has quality defined by quality-
assurance methods. For comparison: the Rational Unified Process 5.0 [15] defines
the quality of only about 30% of artifacts.

The Fusion process, the Rational Unified Process and their customized versions,
are instances of the framework discussed in the previous section. Using the
framework, these processes can be compared against each other by identifying their
software development and management artifacts and specifying the order in which the
artifacts are created, updated and completed, as it is shown in Figs. 8 and 9.
Furthermore, the constructors, quality-assurance methods and artifact lifecycles of
various processes can be compared against each other using the framework in this
article.

Methodological frameworks such as OPEN and various process definition
standards can be compared against the framework in this article by finding mappings
between their elements. Such mappings are not analyzed in detail in this paper.

OPEN [8] is a process-focused object-oriented framework for software
development methods. OPEN provides a range of activities, tasks and techniques,
which can be tailored specifically to each individual organization or individual
project. The OPEN process is an object-oriented framework that regards activities as
objects and tasks as their methods. The execution of the objects (activities) is guarded
by pre- and postconditions on their methods (tasks). The postconditions include
testing requirements and deliverables. OPEN has a well-defined metamodel [4], [7]
consisting of projects, activities, tasks, deliverables, techniques and sequencing rules.
OPEN addresses the same problem as the framework in this article – instead of
specifying a single process, it specifies the process framework and instantiates it (that
is, it creates a concrete method) for specific situations. Although the aim is similar,
both approaches differ in the following details.
• OPEN is a process-focused framework; this article describes a product-focused

framework. OPEN objects (the first class citizens in the object-oriented process
model) are activities. In contrast to this, objects of the framework discussed in this
paper are products.

• Modularity and encapsulation of OPEN are at the level of activities. For example,
OPEN allows an activity to be outsourced to an external organization; the contract
between activities becomes a business contract between the two organizations (ref.
[8], page 45). The modularity of the framework in this article is at the level of
products (software development and management artifacts). The product can be
obtained from an external organization, and the constructor and quality-assurance
methods become a business contract between the two organizations.

• Both OPEN and the framework in this article can create specific methods by
choosing the method components that meet specific demands in specific situations.
A concrete method based on OPEN is created by selecting the activities (with
tasks) necessary to perform the project; the framework in this article is instantiated
by selecting the software development and management artifacts (pieces of
information) necessary to make a final product. If the situation requires artifacts
not specified in the framework, the pattern discussed in section 3 guarantees that
new artifacts are added in a consistent manner.

• OPEN can be transformed into the framework in this article and the other way
around. Although the artifacts in this article are smaller than OPEN deliverables,
each of the OPEN deliverables can be mapped to one or more software
development or management artifacts in this article, and all OPEN tasks and
techniques can be expressed as the constructors of artifacts and quality-assurance
methods. The OPEN activities can be mapped to collaborations between software
development and management artifacts, but this mapping is only possible in certain
cases. This is because the links between OPEN objects and their methods are
specified in terms of probabilities (deontic certainty factors) that allocate which
tasks are needed for which activities [9]. The framework in this article does not
have such a probabilistic mechanism. A classifier (such as collaboration) either
does or does not have its elements. Therefore, the mapping between the
collaborations in this framework and OPEN activities is only possible in cases in
which the values of the deontic factors change to a bimodal distribution (0 or 1).

• The mapping between OPEN and the framework in this article might be useful for
the further development of OPEN. The framework in this article has a succinct
structure of software development and management artifacts, and has
"placeholders" for additional deliverables and tasks not included in the OPEN
process specification [8]. Moreover, the framework in this article provides a
pattern for extensions of the process in a consistent manner. The new improved
version of the OPEN metamodel [7] indicates that OPEN process specification can
easily be extended to cover software development and management artifacts from
the framework in this article.

Several standards related to process definition, such as the Capability Maturity
Model [13], ISO 9000 and the Alistair's Cockburn's VW-Staging [1] define quality
criteria and the key practices that concrete development processes should meet. The
object-oriented specification of a development process can be directly evaluated
against the standards simply by comparing the quality-assurance methods of the
software development and management artifacts with the key practices and quality
criteria defined by the process definition standard. However, the process definition
standards are not supported by any well-defined metamodel. The OMG Process
Working Group White Paper [14] suggests a metamodel using OMG Meta Object
Facility, but without regular structures and guidelines for specifications of the
artifacts.

Unlike the object-oriented framework presented in this article, none of the
standards mentioned describe patterns for structuring the software development and
management artifacts. A development process is therefore more difficult to reuse and
extend in a consistent manner. The process instantiated from the metamodel in the

OMG Process Working Group White Paper is customized off-line by means of
project profiles that reflect, for example, the organizational cultures, industry domains
and technology types. The idea of the profile is certainly useful. However, the object-
oriented framework discussed in this paper allows for process customization at a
much lower level of granularity; the processes can be customized on-the-fly to fit
various problems being solved.

8 Summary

 This paper discussed the product-focused object-oriented framework for the
specification of software development processes. The software development and
management artifacts are modeled as objects with constructors and quality-assurance
methods, along with a number of specific attributes. The object-oriented specification
of a development process is simpler and more consistent than traditional specification
based on tasks and deliverables.

References

1. Cockburn, A.: Using "V-W" Staging to Clarify Spiral Development, available at:
http://members.aol.com/acockburn/papers/vwstage.htm

2. Cockburn, A.: ECOOP 98 panel discussion on Software Development and Process,
Brussels, Belgium, July 1998.

3. Coleman, D. Arnold, P. Bodoff, S. Dollin, C. Gilchrist, H. Hayes, F., Jeremaes ,P.: Object-
Oriented Development: the Fusion method, Prentice Hall, 1994

4. Henderson-Sellers B.: A Methodological Metamodel of Process, JOOP, 11(9): 45-55,
February 1999.

5. Henderson-Sellers B.: Instantiating a Process Metamodel, JOOP, 12(3): 51-57, June 1999.
6. Henderson-Sellers B.: Mellor S. J.: Tailoring Process-Focused OO Methods, JOOP, 12(4):

40-44, July/August 1999
7. Firesmith D., Henderson-Sellers B.: Improvements to the OPEN Process Metamodel,

JOOP, 12(6), October 1999
8. Graham I., Henderson-Sellers B., Younessi H.: The OPEN Process Specification,

Addison-Wesley, Harlow, 1997
9. Graham I.: Message in the mailing list OTUG, Subject: RE: (OTUG) Unified Process

????, 17 September 1998, 01:09 GMT.
10. Hruby, P.: Structuring Design Artifacts with UML, in: <<UML>>'98: Beyond the

Notation, Bezivin J., Muller P.A. (editors), Springer Verlag LNCS 1618, 1999.
11. Hruby, P.: The Pattern for Structuring UML Based Repositories, OOPSLA'98, Vancouver,

Canada, 1998.
12. Kruchten, P.: The Rational Unified Process, Addison-Wesley, 1998.
13. Paulk M. C. et al.: Capability Maturity Model for Software version 1.1, CMU/SEI-93-TR-

024
14. OMG White Paper on Analysis & Design Process Engineering, Process Working Group,

Analysis and Design Platform Task Force, OMG document ad/98-07-12, July 1998.
15. The Rational Unified Process 5.0, Rational Corporation, 1998.

