NAVISION

software

STRUCTURING DESIGN DELIVERABLES WITH UML

«UML»"98, Mulhouse, France, June 3-4, 1998

Pavel Hruby
Navision Software a/s
ph@navision.com

NAVISION

software

NAVISION SOFTWARE

Strategic provider of efficient accounting
and business management solutions.

Address: Frydenlunds Allé 6
2950 Vedbaek

Denmark

http://www.navision.com

NAVISION

software

WHAT MAKES A GOOD
SYSTEM
DESCRIPTION?

Use Case
Static
Structure

Activity
Diagram

LT]

(o} Card \

RC

UML defines a standard notation for object-oriented systems.

However, UML does not specify how to structure the information describing

the software system, nor does it specify which diagrams to include in the software
models or what the relationships between various models are.

NAVISION

software

EXAMPLE:
How TO SPECIFY SYSTEM BEHAVIOR

a) Create scenarios ’f’

b) Create sequence diagrams

What is correct?

To answer this question, we must realize that there is a difference between
a design deliverable and its representation.

The deliverable determines the information about the software product,
and the representation determines how the information is presented.

NAVISION

software

DELIVERABLES
A deliverable is a piece of information about a software

product.

A deliverable has a representation, properties, responsibilities,
attributes, methods and relationships to other deliverables.

Useful design documentation is based on precisely defined
deliverables, rather than on diagrams.

The worddeliverableis perhaps not the best one to use.
However, the termsode] or artifact have drawbacks as well.

If you have other suggestions about how to refer to “a unit of information about
software system,” please send me an e-mail at ph@navision.com

NAVISION

software

DIAGRAMS ARE REPRESENTATIONS OF
DELIVERABLES

Interaction model is represented by
«Sequence Diagram
«Collaboration Diagram

State model is represented by
.Statechart Diagram
«Activity Diagram
.State Transition Table

NAVISION

software

EXAMPLE: LOGICAL DESIGN OF A SUBSYSTEM

Object Relationships o EE iRl aRhan

[[[
[[[

Object
Responsibilities

Object State Model

A deliverable specifying object relationships is linked to several deliverables
specifying object interactions. All of these deliverables are linked to deliverables
specifying object responsibilities. A deliverable specifying object

responsibilities is linked to a deliverable specifying object state model.

The same structure can also be used with other UML classifiers, such as classes,
subsystems, components, interfaces, nodes and even with use cases.

NAVISION

software

A PATTERN OF FOUR DELIVERABLES

Static Structure Diagram \ 0.1 & Classifier | — Collaboration Diagram
Use Case Diagram Classifier Model Interaction Sequence Diagram
Deployment Diagram Model

Component Diagram

*
*

» | — State Diagram
Classifier C'ass'f'e(; ls““e Activity Diagram
1 * Mode State Table

Backus-Naur Form

CRC Card — |
Text

The classifier modelspecifies static relationships between classifiers. The
classifier model can be represented by a set of static structure diagrams (if
classifiers are subsystems, classes or interfaces), a set of use case diagrams (if
classifiers are use cases and actors), a set of deployment diagrams (if classifiers
are nodes) and a set of component diagrams in their type form (if classifiers are
components).

The classifier interaction modedpecifies interactions between classifiers. The
classifier interaction model can be represented by interaction diagrams:
sequence diagrams or collaboration diagrams.

The deliverable calledlassifier specifies classifier responsibilities, roles, and
static properties of classifier interfaces (for example, a list of classifier
operations with preconditions and postconditions). Classifiers can be represented
by structured text, for example, in the form of a CRC card.

The classifier state modebpecifies classifier state machine and dynamic
properties of classifier interfaces (for example, the allowable order operations
and events).

An instance of theclassifier modelcan be linked to several instances of the
classifier interaction modelAll of these instances are linked to instances of the
classifier An instance of thelassifieris linked to an instance of tlwassifier
state model

NAVISION

software

Use Case

STRUCTURING
DELIVERABLES siuctue

Diagram Collaboration
Diagram

p Activity

.)
‘ Diagram >

———
LT
CRC Card \

Some of the deliverables can be represented in UML.

In well-structured design documentation, the required information about
software products can be easily located and closely related information is linked
together. It also gives an overview about the completeness of the documentation
and consistency between deliverables.

One of the answers:
Deliverables can be structured in various views and levels of abstraction.

NAVISION

software

VIEWS AND
LEVELS OF ABSTRACTION

Use Case Logical Component Deployment
View View View View

System Level

‘ Architectural Level ‘

Class Level

‘ Procedural Level ‘

UML is intended preferably to be used in in use case, logical, component and
deployment views. However, the software product can be described in other
views, such as the test view, the database design view, the user interface view
and the user documentation view.

Typically, the software product is described at the system, architectural, class
and procedural levels of abstraction. Bystem levalescribes the context of

the system. The system level specifies responsibilities of the system being
designed and responsibilities of the systems that collaborate with it;
responsibilities of physical devices and software modules outside the system;
and static relationships and dynamic interactions between them and the system
being designed. Theahitectural leveldescribes subsystems, software modules
and physical devices inside the system and their static relationships and dynamic
interactions. Thelass leveldescribes classes and objects, their relationships and
interactions, and therocedure levetiescribes procedures and their algorithms.

The product can also be described at other levels of abstraction, such as the tier
level, the domain level, the analysis level and the business object level.

NAVISION

software

APPLYING THE PATTERN

At each level of abstraction and in each view, a software product
can be described by classifier relationships, interactions,
responsibilities and state machines.

Use Case Logical Component Deployment
View View View View
‘ System Level F/ .4 : Classifier
/| Classifier Model Interaction Model
*
‘ Architectural Level ‘ N ‘
* *
‘ Class Level][i Classifier State
\ Classifier " Model
1
‘ Procedural Level ‘

This is a key point of my presentation.

NAVISION

software

APPLYING THE PATTERN

Use Case View Logical View Component View Deployment View

System Level

Architectural Level

Class Level

Level

Procedural

el

Each deliverable (gray rectangle) contains a specific piece of information about
a software product.

The only exception in the symmetrical structure is the procedural level, which
does not contain the procedure model (relationships between procedures) or the
procedure interaction model (interactions between procedures). The reason for
the absence of models is the principle of object-oriented design, in which the
class model and the object interaction model substitute procedure relationships
and procedure interactions respectively.

We have been already talking about the deliverables in the logical view and at
the class level of abstraction.

NAVISION

software

Use Case View Logical View Component View Deployment View
_ Sysem Sysem Use Case oo ol Systm neracion Sysem Systen
T Use Case Model Interaction Model & Model Component Model] Node Model Interaction Model
B [[[[
z Systen State System 9o Systen Node State
@ System Use Case Use Case Activity System % Model o ve t Component System Node % ‘Model
Model odel omponent State Model odel
R R LY
heetnes arefinds refine> -
i
- Suvsrten Use Swbsytem
5 Subsysten Subsysen Subsystem Node
g Component Mol JeRComb s Note Model Inteacton Model
El
g Subsysen Use ‘ ‘
2 Subsystem " Subsystem Subsystem Node
3 T Case Actuty e Component State. Subsystem Node e
H ‘ compenent L S er
T T
|t ey gy gy
Chss Use Case Clas use case e o Objct neracton class Component Class Component s ot el class o
= ool neracion ade! ode ode Tneracton wadel Ineracton wadel
H
; \ \ \ \
& cass ClassUse Case T Cuss Class Component s ode Class ode sute
‘ Use Case Activity Model & GLrgnnit) Component Activity Model CEEERC Model
wrefingy
5
£ Procedure A
%5 Model
gs
g
i
o
] Sourcs Cate
8 L]
88

The logical view and the architectural level of abstraction.

NAVISION

software

SYSTEM ARCHITECTURE - LOGICAL VIEW

0..1 *
Subsystem
SUIBSTRAE loee] Interaction Model
*
*
*
*
Subsystem State
Subsystem . . Model

The subsystem modspecifies static relationships between the subsystems. The
subsystem interaction mod##scribes interactions between subsystems. The
subsystemspecifies subsystem responsibilities, roles and static properties of
subsystem interfaces (for example, a list of subsystem operations and events).
The subsystem state modglecifies behavior of the subsystem and dynamic

properties of subsystem interface, for example, the allowable order of subsystem
operations and events.

The subsystem interaction diagram represent interactions between subsystems,
without it being necessary to specify actual objects that send or receive
messages.

The subsystem state modglecifies dynamic properties of subsystem interfaces,
without it being necessary to specify in which objects they are implemented.

NAVISION

software

SYSTEM ARCHITECTURE - DEPLOYMENT VIEW

ode
Level

Use Case View Logical View Component View Deployment View
_ Sysem Sysem Use Case oo ol Systm neracion Sysem Systen
T Use Case Model Interaction Model & Model Component Model] Node Model Interaction Model
B [[[
b System
& System Use Case Use Case ety sysem Gz <no Snam component System Node Sy e s
Model odel omponent State Model odel
R LY
heetnes arefinds refine> -
- Suvsrten Use Swbsytem
5 Subsysten Sunsyster
g U ‘ e M“ G s neation Wovel
El
g [[
2 Susystem use wsstem Stae
\oie
T T T
i i i i
lect 1 o o
Chss Use Case Clas use case e o Objct neracton class Component Class Component s ot el Clas ot
= Wodel neracion Model odel Vodel neracion Model neracion Motel
: [[[[
& cass ClassUse Case T Cuss Class Component s ode Class ode sute
‘ Use Case ‘Activity Model & GLrgnnit) Component ‘Activity Model CEEERC Model
T
wrefingy
g di
S Procedure Acthly
3
%5 Model
gs
g
e %

The deployment view and the architectural level of abstraction.

NAVISION

software

SYSTEM ARCHITECTURE - DEPLOYMENT VIEW

0.1 *]
Node Model Node Interaction
Model
*
*
*
*
Node Node State Model
1 *

The node modetpecifies static relationships between the nodes, for example
hardware connections. Tin@de interaction modelescribes interactions
between nodes. Thedespecifies node responsibilities, roles and static
properties of nodes and node interfaces. fitde state modspecifies states
and state transitions of the node.

The node interaction model represents interactions between node instances,
without it being necessary to specify actual objects that send or receive
messages.

The node state model represents node state variables without it being necessary
to specify how they are implemented.

NAVISION

software

SYSTEM CONTEXT - LOGICAL VIEW

Code.
Level

Use Case View Logical View Component View Deployment View
Sytem
_ Sysem Sysem Use Case Sysem = System
(] Use Case odel neracion Model Component Madel B nvore 8 Node Model Ineracion Model
B [[
b System System
& System Use Case ool component System Node Sy e s
omponent State Model odel
A LY
heetnes arefinds refine> -
i
- Suvsrten Use Swbsytem
5 Subsysten Sunsyster Subsysen Subsystem Node
se Case Model Cassliiepeio BIEED G Interaction Model omponent Model Component jode Model Interaction Model
g Use Case adel e Ineracion Model Component Mol JeRComb s Note Model Inteacton Model
El
g [[[[
s B Case ety subsystn S o S Component Stte Subsystem Nove B W
g Mosel C Model
T T T T
i i i i
lect 1 o o
Chss Use Case Clas use case e o Objct neracton class Component Class Component s ot el class o
= ool neracion ade! ode ode Tneracton wadel Ineracton wadel
: [[[[
& cass ClassUse Case T Cuss Class Component s ode Class ode sute
‘ Use Case Activity Model & GLrgnnit) Component Activity Model CEEERC Model
wrefingy
g di
S Procedure Acthly
3
%5 Model
gs
g
e %

The logical view and the system level of abstraction.

NAVISION

software

SYSTEM CONTEXT

*
0-A System Interaction

System Model Model

* %

System and Actor

System and Actors State Model

The system modeipecifies static relationships between the software product and
collaborating systems.

The system interaction moddescribes interactions between the software
product and collaborating systems. These interactions are instances of system
use cases.

The systenspecifies system responsibilities, roles and static properties of system
interfaces (for example, a list of system operations and events). Other instances
of this model can represent responsibilities of external systems and actors, if
they are relevant.

The system state modspecifies behavior of the system and dynamic properties
of system interface, for example, the allowable order of system operations and
events.

In the Fusion method, the system state model is cajistgm lifecycle

NAVISION

software

RELATIONSHIPS BETWEEN DELIVERABLES

Logical View Use Case View
_ System Model System Interaction ﬁlnstince» System System Use Case
g Y Model | Use Case Model Interaction Model
] |
- R | T
3 v — — — «collaborations»- e e i
% | System
(%‘ System Sy SiEie I——> System Use Case Use Case Activity
Model Model
A A A
| : | |
«refine» :' _______ Bz «refine»
L L
D «instance» Subsystem Use
g Subsy Model Sub{;yslem el SHIEEET Case Interaction
2 Interaction Model | Use Case Model Model
|
© ‘ - | T ‘
= — — — — — — «collaborations» - - — 4 — 4 — — —
2 v I
9] | Subsystem Use
z Subsystem Syt Sk I > BB Case Activity
o Model Use Case
2 Model

An efficient structure of design deliverables is based on relationships between
them.

In well-structured design documentation, closely related information is linked
together.

NAVISION

software

COLLABORATIONS AT THE SYSTEM LEVEL

Logical View Use Case View
_ R System Interaction «\HSEICS» System System Use Case
g Y Model | Use Case Model Interaction Model
()
—
3 ‘ e —jj— -«collaborations» — |— I— L=l ‘
3 I
o
7] System
(%‘ System SR SN - —=/ System Use Case Use Case Activity
Model Model
A AN
] I
«refine» |_ == = ail i = == = «refine»
L
D «instance» Subsystem Use
g Subsy Model Sub{;yslem el SHIEEET Case Interaction
2 Interaction Model | Use Case Model Model
|
© ‘ - | T ‘
= — — — — — — «collaborations» - o — — — < — — —
2 v I
9] | Subsystem Use
z Subsystem Syt Sk I——> BB Case Activity
o Model Use Case
2 Model

UML 1.1 does not have a symbol for collaboration. Therefore, in this
presentation | assume that collaborations are specified by use cases.

In this presentation, the terase caseén used in a wider sense than in UML. The
system, subsystem, class, component and node use cases are collaborations of
the system, subsystem, class, component and node with other classifiers. These
other classifiers can be inside or outside the system.

NAVISION

software

COLLABORATIONS AT THE SYSTEM LEVEL:
STRUCTURING DELIVERABLES

System | System Collaborations
o \ tSYS‘et_m collaborations USVStCem
> nteraction se Case
3 Model 0.1 Model = Pa;kage of System L:sle Cases
stem Responsibilit)
g * | Use case| B sy P Y
1) System instance [E) System Use Case Model
-~ responsibility Use case m
@ System 1 responsibility Ussi.s::ease 58 @ System Use Case
01 [System Interaction Model
= 0.1 |Use case [E] Subsystem Model
== Use case responsibility [Subsystem Interaction Model
23 realization o
E] A |3 Subsystem Responsibility
E [Z) Subsystem State Model

I use UML in this presentation. In UML, dependencies cannot have roles at their
ends. (I hope that the next version of UML will allow dependencies with role
ends!) Therefore, in this slide | replace the dependencies from the previous slide

by associations.
The associations between deliverables are on the left, an example of their
projection is on the right.

NAVISION

software

REFINEMENT AT THE SYSTEM LEVEL

Logical View Use Case View
_ R System Interaction :lnstince» System System Use Case
g Y Model | Use Case Model Interaction Model
] |
- R | T
3 v — — — «collaborations»- e e i
% | System
(%‘ System S SED [System Use Case Use Case Activity
Model Model
A A A
|) | |
«refine» :' ________ (el «refine»
1
— «instance» Subsystem Use
g Subsy Model Sub{;yslem el SHIEEET Case Interaction
2 Interaction Model | Use Case Model Model
|
© ‘ - | T ‘
= — — — — — — «collaborations» - - — 4 — 4 — — —
2 v I
9] | Subsystem Use
= Subsystem Subsystem State |__> Subsystem Case Activity
o Model Use Case
2 Model

The deliverablesystenspecifies responsibility of the system and static
properties of the system interface (for example, a list of system operations and
events).

The deliverablesystenmis refined into the deliverablssibystem modedubystem
interaction modelsubystem statmodelandsubystemwhich represent design
of the system.

NAVISION

software

REFINEMENT AT THE SYSTEM LEVEL:
STRUCTURING DELIVERABLES

£ _ System System State ’ System Refinement

ol y Model -

2 [System Responsibility

»~ o=} System Operation

Responsibility |1 1..* Syste;r} +
cpefatol "-[& Subsystem Interaction Model

3] Subsystem Model

= Static Operation «gonform>» -[Z] Subsystem Responsiblity

= Structure |1.* Realization | 1

g E - [Z] Subsystem State Model

Lo

= 5 Subystem

§ SlbsritEm e Interaction Model

<

The dependency «refines» from the previous slide was “refined” into several
associations.

The associations between deliverables are on the left. An example of their
projection is on the right.

NAVISION

software

SEVERAL WAYS HOW TO SIMPLIFY THE STRUCTURE

Use Case View Logical View Component View Deployment View

System Level

Architectural Level

Class Level

Procedural
Level

Code.

Typically, instances of deliverables are separate documents. However, there
might be pragmatic reasons for creating documents containing several closely
related deliverables.

For example, the deliverablessifierandclassifier state modelre always
linked together. They can be joined into one document.

NAVISION

software

SEVERAL WAYS HOW TO SIMPLIFY THE STRUCTURE

Use Case View Logical View Component View Deployment View

It is also possible to join system, subsystem and class use case models to one use
case diagram, providing that use case levels are clearly distinguished. It is
necessary to distinguish levels of use cases, because use cases at different levels
are related to different deliverables.

It is also possible to create one static structure diagram containing actors,
system, subsystems, classes and procedures. Similarly, component and node
models at all levels can be joined into one implementation diagram document,
providing that levels of components and nodes are distinguished.

Interaction models (magenta color) can be joined together in the same way as
the classifier models (green color).

NAVISION

software

SEVERAL WAYS HOW TO SIMPLIFY THE STRUCTURE

Deployment View

aaaaaaaaaaaaaaaaaaaa

=======

Architectural Level

ssssssssssssssssssss

Procedural
Level

Code.

It might also be reasonable to create one static structure model within each level
and show static relationships between use cases, actors, subsystems, classes,
components and nodes in one diagram, althougb/thie Notation Guidedoes

not mention such a combined static structure diagram.

NAVISION

software

OTHER APPLICATIONS OF THE PATTERN:
LAYERED ARCHITECTURE

Logical View Use Case View
) Tier Interaction | «instance» Tier Use Case iy e Caee
Tier Model Interaction
— Model Model
g Model
A T N «collaborations» ‘ ‘
=
Q) Tier
= Tier T%Oi:te Tier Use Case Use Case
Activity Model

Systems with layered architecture hauesalevelbetween the system level and
the architectural level. Theer level specifies system layers, their relationships
and interactions. In a layered system each layer contains subsystems and
components.

The tier level contains the tier model (relationships between system layers), the
tier interaction model (interactions between system layers), the tier
(responsibility of the layer) and the ties state model (dynamic properties of the
system layer interfaces). Models at the tier level are usually refined into models
at the architectural level.

NAVISION

software

OTHER APPLICATIONS OF THE PATTERN:
SOFTWARE TESTING

Use Case View Test View

Test Suite
Activity Model

Test Suite

Test Suite
Level

A

T
«refine»

Test Interaction

Test Model Model

«trace»

Use Case Test Case Test Algorithm

Test Level

A

T
«refine»
i

Script
Level

Test Script

Deliverables in the test view are the test model (static relationships between
tests), the test interaction model (interactions between tests), the test case
(description of the test), and the test algorithm (test activity model describing the
test algorithm). Test deliverables can be described at various levels such as the
test suite level, the test level and the test script level. Deliverables at the test
suite level are the test suite (a set of tests), the test suite activity model (the
sequence of tests run within a test suite).

The dependency with the stereotype «trace» indicates that test cases can be
based on use cases.

NAVISION

software

OTHER APPLICATIONS OF THE PATTERN:
ON-LINE DOCUMENTATION

Document
Document .
Interaction
Model

Model
|

Document Document State
Responsibility Model

A

T
«refine»
i

Document Level

Text
Level

Text

The pattern can be used for designing online user documentation. Deliverables
for user documentation are the document model (static relationships between
documents), the document interaction model (typical scenarios that arise in
searching for particular information), responsibilities of documents (short
descriptions of their purpose and contents) and document state model (if the
document has behavior). Deliverables for user documentation can also be
described at various levels: the book level, the document level and the text level.

NAVISION

software

REPRESENTATION OF DELIVERABLES

eUML diagrams from UML Notation Guide
el ess common UML diagrams

eText (for example, CRC Card)

eTable (for example, state table)
eBackus-Naur Form

Design deliverables do not necessarily have to be described by UML. Practical
alternatives to UML are Backus-Naur form (BNF), tables and text. The choice
of the representation depends on the problem being described, as well as other
circumstances such as who the intended reader is.

Tablescan describe relationships between classifiers, states or other entities that
can have mutual relationships. Although a diagram is a more user-friendly
representation, a table is a good development tool and ensural that
relationships between entities have been considered. For example, a table
describing relationships between classes has class names in rows and columns
and relationships between classes are specified in the table fields. State
transition tables are a presentation alternative to statechart diagrams or activity
diagrams. Rows of state transition table represent states, columns represent
events and table fields contain conditions and actions of state transitions.

Structured or free textan be used to describe classifier responsibilities. Text
can be structured in a way that is similar to the way a CRC card is structured.

NAVISION

software

LEss CommoN UML DIAGRAMS:
INTERACTIONS BETWEEN COMPONENTS

«actor» Presentation %)
s Form Object Manager Database MS Windows

Row=GetRow

Update

\
\
\
‘ Update(Row)
\
\
\
\
\

\ \ \
\ \ \
—
=
S
\ \ \

W

Interaction diagrams for subsystem, component and node interactions are
sequence and collaboration diagrams in which classifiers are subsystem,
component and node. These diagrams represent interactions between subsystem,
component and node instances, without it being necessary to specify actual
objects that send or receive messages.

In UML 1.1, classifier roles in sequence and collaboration diagrams are shown
as objects. This might lead to confusion in cases of interactions between
classifiers of different kinds. For example, symbols on the collaboration

diagram, which represents interactions between the object, subsystem and
component, are all shown as objects. Sequence and collaboration diagrams
would be easier to understand if an object symbol representing the classifier role
was replaced by the symbol of an actual classifier, as shown in the slide.

NAVISION

software

LEss CommoN UML DIAGRAMS:
INTERACTIONS BETWEEN COMPONENTS

il: PageDown

1.2: Update(Row)

B0 - Presentation
Object Manager

4\ L 1.3: Update
$ 1.2.1: Paint

RowSet
«utility»

1.1:Row=GetRow ¢

NAVISION

software

LEss CommoN UML DIAGRAMS:
Use CASE INTERACTION MODEL

0.1 2
Use Case Model

*

* %

Use Case
Activity Model

Use Case

Use case interaction diagrams are sequence and collaboration diagrams in which
classifier roles are use case roles. This type of diagram can represent scenarios
consisting of sequences of use cases. An actor can use a system in a way that
initiates use cases in a particular order. Such a scenario — a sequence of use
cases — can provide useful information about the system, and it can be shown in
use case interaction diagrams.

NAVISION

software

ALLOWABLE ORDER OF USe CASES

Customer Company ships
requests an item an item
A

«extends»
Customer pays Customer
for an item returns an item

Customer

UML 1.1 cannot easily express that a customer first requests an item, then a
company ships an item, and then the customer pays for an item.

NAVISION

software

ALLOWABLE ORDER OF USeE CASES:
Use CASE DIAGRAM

Customer {precedes} Company ships
requests an item an item
% } A

Customer

{precedes} «extends»

Customer pays Customer
for an item returns an item

One of the solutions is to use constraints {precedes}, or dependencies
«precedes» between use cases. Similar relationships exist in OML (OPEN
modeling language), please see
http://www.csse.swin.edu.au/cotar/fOPEN/OPEN.html.

However, this is still a static structure diagram, not a scenario!

NAVISION

software

ALLOWABLE ORDER OF USeE CASES:
SEQUENCE DIAGRAM

Customer Company ships Customer pays Customer returns
requests an item an item for an item an item

invoke

[customer not s’atisfied]: invoke N

| |
| |

| | | N
| X

|

|

|

\

invoke N

\
X

Theuse case interaction modgbecifies typical sequences of use case instances.

In contrast to object, component and node interaction models, where a scenario

is described as a sequence of messages, the use case interaction model describes
the scenario as a sequence of use cases. This model is the only UML deliverable
that can describe a scenario consisting of other scenarios.

Please note that use cases in UML can interact only with actors and not with
each other. Also, they are always initiated by a signal from the actor. Therefore,
the labelinvokemeans that aactor can invoke a use case while executing
another use case. Invocations on the diagram map to signals from an actor to a
use case and to static relationships between use cases: generalizations «uses»
and «extends», dependencies «invokes» and «precedes», or constraints
{invokes} and {precedes}.

Please note that the complete behavior (not just scenarios) of a specific use case
can be described in use case activity diagrams in which action states map to
subordinate use cases.

NAVISION

software

ALLOWABLE ORDER OF USeE CASES:
COLLABORATION DIAGRAM

1: invoke
Customer = __/ Company ships
requests an item an item

1.1 [customer not satisfied]: invoke

Customer returns
an item

% $ 2: invoke

Customer pays
for an item

The collaboration diagram showing the same scenario.

NAVISION

software

INTERFACE SPECIFICATION:
BACKUS-NAUR FORM

Create; (read | write | print)*; delete; PD_Driver
{abstract}

create() (
read() |
write() |
print())
delete()

*

Backus-Naur form (BNF) represents scenarios with one or two participants or a
valid order of operations of one classifier. Therefore, BNF is convenient for
specifying interfaces.

The slide shows an interface with five operations, where the opeCGreare
must be called first, and the operatidtead, Write andPrint can then be
called in arbitrary order. The operatibelete must be called last.

In simple cases, BNF expressions can be placed directly into the operation
compartment of the class.

NAVISION

software

OBJECTORY METHOD

Use Case View Logical View Component View Deployment View

System Level

Architectural Level

Class Level

Procedural
Level

nnnnnnnnn

Code.

The deliverables of the Objectory method are structured on use case, logical,
deployment, implementation and process views, and tier, architectural, and class
levels.

Deployment and implementation views contain only component and node
models and component responsibilities. The interaction models are considered
as a specific view callegrocess view

The method produces only use cases at the system level; the method does not
produce any state models with the exception of the use case activity model and
the class state model. The deliverables are structured according to their
relationships to the use cases (in other words, according to their collaborations
with external actors).

NAVISION

software

FusioN METHOD

Use Case View Logical View Component View Deployment View

System Level

Architectural Level

Class Level

Level

Procedural

TheFusion method is a method with a succinct and consistent system of
deliverables that is orthogonal, which means that one fact about the product is
stated only in one place.

Fusion focuses on deliverables in the logical view at system, subsystem and
class levels. At the system level, Fusion delivers the system nuodgiett(model
in Fusion), the system interaction mod&td€narioin Fusion), the system
(operation modein Fusion) and the system state modi&#¢ycle modein
Fusion). At the subsystem level, Fusion delivers only the subsystem model
(system object modal Fusion). At the class level, Fusion delivers the class
model {isibility graphsandinheritance graphy the object interaction model
(object interaction graphsand the classlass descriptions Fusion). Fusion
does not produce any state models except of the system state lifexiallé¢
modelin Fusion). Deliverables are structured according to the refinement
between levels of abstraction.

The new Fusion Engineering process (also known as Team Fusion) produce also
use cases and use case model.

NAVISION

software

SHLAER-MELLOR METHOD

Use Case View Logical View Component View Deployment View

Analysis in the Shlaer-Mellor method (hereafter SM) is focused on the logical
view, and therefore the method does not produce any deliverables in use case,
component and implementation views.

The Shlaer-Mellor method does not produce any deliverables at the system
level. The method recognizes an extra domain level with the domain model
(calleddomain charin SM).

At the subsystem level, the method produces the subsystem rmglog}fgtem
relationship modedndsubsystem access modeEM), the subsystem
interaction modelgubsystem communication moateEM) and the subsystem
(subsystem descriptian SM).

At the class level the Shlaer-Mellor method produces the class nodgisdi(
information modelndobject access modal SM), the object interaction model
(object communication modahdthread of control charin SM), the class
(objectdescriptionin SM) and the class state modghfe transition diagram
andclass structure chaitin SM). At the procedural level, Shlaer-Mellor
produces the proceduraction specificationn SM) and the procedure algorithm
(action data flow diagrann SM). Please note that the procedwaetibn
specification is related directly to the state in SM and not first to the class and
then to the state as it is in the pattern of four deliverables.

NAVISION

software

MORE INFORMATION

Pavel Hruby
e-mail: ph@navision.com
Internet: www.navision.com/services/methodology

If you have other solutions or comments please let me know.

Whether you have downloaded the presentation from the web site, or obtained it
from some other source, | am interested in hearing your opinion or alternative
view.

