
The Object-Oriented Model for a Development Process
Pavel Hruby

Navision Software a/s, Frydenlunds Allé 6, 2950 Vedbaek, Denmark
E-mail: ph@navision.com, homepage: www.navision.com

Abstract
Have you tried to describe your development process based on workflow and later found it difficult to meet demands
for customizations, quality and usability in general? It might help to consider deliverables objects and evolution as
object interactions. We will discuss our experience with such a process definition with an eye towards approaches
such as Fusion, Objectory, OPEN Process Specification, Microsoft Solutions Framework and Capability Maturity
Model.

Basic Features of the Object-Oriented Process Model
Deliverables produced during software development are considered objects with various methods and attributes.
Deliverables have constructors, which are methods describing how to create a deliverable, and quality-assurance
methods, such as completeness and consistency checks. Deliverables have numerous attributes: name, kind,
description, references to other deliverables, project, subsystem, increment identification, responsible developer and
other attributes such as who created and modified the deliverable and when.

The attributes kind and name taken together are the key that uniquely identifies the deliverable in the data
dictionary. The attribute description typically contains a UML diagram, a table or a text. The choice of a suitable
representation is left up to the judgement of the developer and depends on the specific situation. For example, a use-
case model can be represented by a use-case diagram, a list of use-cases (text), use-case schemes, text describing
sample scenarios, and so on. A component interaction model can be represented by one or more sequence diagrams,
collaboration diagrams, state diagrams, activity diagrams, in Backus-Naur form, and so on.

Almost all other attributes can contain a number of values so that a deliverable can be related to several other
deliverables and can be reused within different projects, increments or components.

Concrete classes of deliverables define methods of the deliverable and can include other specific attributes.
Examples of deliverable classes are task context (see below), use-case model, class model, component interaction
model, data types, note, and so on. The name of the deliverable class is specified in the kind attribute.

Each increment (a small piece of functionality added to the existing product) is defined by a single deliverable
called a task context document, which corresponds to a task in Microsoft Project. The task context document contains
general information about the increment, such as a synopsis, requirements, metrics (time estimates), the developers
responsible, and so on. The task context document exists throughout the entire life cycle of the increment (from
requirement analysis to implementation and testing). The development phase of the increment is represented as a
value of one of the attributes of the task context document.

Experience with the Object-Oriented Process Model
We at Navision Software have developed tools that are helpful for creating and organizing project deliverables. Our
solution was based on two Lotus Notes databases: one was used as a data dictionary, and one was used as a project
management database. The data dictionary contained both terminology definitions and design deliverables. Lotus
Notes documents can have fields that contain OLE objects, for example, diagrams created in Visio or ABC Flow
Charter. They can also have links to other documents in the same or other databases. Documents can be organized
(viewed) using different sorting and selection criteria, for example by kind of entry, by project, by task, by subsystem,
by person responsible, and so on. The main benefit of using these tools was flexibility – in notation, in the kinds of
deliverables in the repository and in the possibilities provided for modifying the process according to the size and
character of the task.

The benefits of the object-oriented definition of the software development process are:
• It can manage the complexity of the development process in a better way than the workflow model. As a result,

the final process description is more transparent and easier to modify or customize.
• It is robust and easy to use. Small increments typically result in a small subset of deliverable classes: task context,

plan, source code, user documentation and perhaps several design documents. The quality-assurance methods
guarantee consistency between deliverables. With larger increments, the number of kinds of deliverables can be
increased and always reflects project state and any specific requirements.

• The process provides good management support for incremental development. Each increment is defined in a
single document that exists throughout the increment’s life cycle.

• The model is flexible and applicable to processes with a wide range of characteristics. By simply defining or
redefining the methods and attributes of the deliverable classes, the model can be easily adapted for use with
different kinds of development processes.



Other Models for Development Processes
 Most of the currently used models for development processes are based on the workflow model, or on the object-
oriented model in which activities are objects, tasks are object operations and deliverables are operation
postconditions.

 The workflow model is defined with a graph of activities, tasks and deliverables. In general, such a definition
cannot cover all the possible combinations of activities and deliverables without becoming overly complex. A model
(whether object-oriented, or not) can be deliverable-based and focused on which deliverables are produced or
activity-based and focused on which activities or tasks are performed within each development phase. The
deliverable-based model has several advantages over the activity-based model: it is usually easier to ensure the
quality of a deliverable than the quality of an activity. It is also easy to determine whether a deliverable is finished,
while various activities can be performed in parallel making the activity-based model more difficult to manage.

 The model presented in this article is object-oriented and deliverable-based. The following paragraphs compare
our model with several other models for software development processes.

Fusion
The Fusion process [1] uses a deliverable-based workflow model. For each deliverable and milestone, the
constructors and quality checks are well defined. It is therefore pretty straightforward to construct the object process
model for the Fusion method. The object orientation of the method makes it easy to define user-specific extensions
and customizations of the method. Object orientation also guarantees that extensions are consistent with the original
method. You can read more about this topic in reference [3].

Objectory
The Objectory process [6] uses an activity-based workflow model. The process is complex, but it is made more
manageable by viewing the process in different ways such as by notation, by workflow, by documentation, by
artifacts and by workers. It is also made more manageable by necessary configuration (adaptation) to meet specific
needs. The representation of the process in Objectory Online helps significantly in managing the complexity of the
process. However, the object-oriented model for process is probably simpler. It would be easier to ensure the quality
of each deliverable and it would be probably also be easier to manage the iterative development with the object-
oriented model.

OPEN Process Specification
OPEN Process Specification [2] defines activities as objects, tasks as object operations and deliverables as operation
postconditions. This approach leads to a complex solution, with time-boxes for managing activities, and probabilistic
links between tasks and activities. Compared to the object model presented in this article, this model is more
complex, seems less fail-safe (activities and tasks do not contain any quality criteria; their quality is typically ensured
by another task) and would be more difficult to customize.

Microsoft Solutions Framework (MSF)
MSF [4] is a set of guidelines for developing client-server systems. MSF establishes a common framework that
defines a team model, a process model and an application model. MSF can include user-defined processes (called
best practices) that are compatible with the framework. The MSF process model is deliverable-based and can
therefore quite naturally incorporate concrete processes defined in the object-oriented process model focused on here.

Capability Maturity Model (CMM)
CMM [5] defines a set of quality criteria and key practices that are used to classify software processes into five
maturity levels. An actual object-oriented process can be directly evaluated using CMM because key practices and
quality criteria can be compared with the quality-assurance methods of the deliverable objects in the process.

Conclusions
 We have described an object-oriented model for a development process. The main artifacts of our model are
deliverables, which are modeled as objects with constructors and quality-assurance methods and a number of specific
attributes. The process is simpler and it is easier to customize than other development process models. We have
described our experience with the model, which we find flexible, robust and, in general, easy to use.

References
[1] Coleman, D. et al.: Object-Oriented Development: the Fusion method, Prentice Hall, 1994
 [2] Henderson-Sellers B., Graham I., Younessi H.: The OPEN Process Specification, to be published
[3] Hruby, P.: The Object Model for a Product Based Development Process, ECOOP’97 Workshop on Modeling
Software Processes and Artifacts, 1997
[4] Microsoft Solutions Framework version 2.0, Microsoft, 1997
 [5] Paulk M. C. et al.: Capability Maturity Model for Software version 1.1, CMU/SEI-93-TR-024
 [6] Rational Objectory Process version 4.0, Rational, 1997


