
Structuring Specification of Business Systems with UML
(with an Emphasis on Workflow Management Systems)

Pavel Hruby

Navision Software a/s
Frydenlunds Allé 6

2950 Vedbaek, Denmark
Tel.: +45 45 65 50 00
Fax: +45 45 65 50 01

E-mail: ph@navision.com
Web site: www.navision.com (click services)

Abstract. Unified Modeling Language (UML) defines a standard notation for object-oriented
systems. Using UML enhances communication between domain experts, workflow specialists,
software designers and other professionals with different backgrounds. UML can be used on a
general level, which is intuitive for the users of workflow systems. In spite of this, UML symbols
also have defined semantics, which means that the visual workflow description can be used as a
software specification. This position paper explains how to use UML for specification of
workflow management systems, how to trace the description of business processes to the object-
oriented software design and how to structure the project repository with UML deliverables.

Key Words: UML, Business process, Deliverable, Workflow

1. Introduction

This paper is organized in the following way. This, the first section, explains the need for a
common language among software designers and users of the workflow products. The second
section shows how to represent common workflow concepts in Unified Modeling Language
(UML). The third section outlines how to connect the description of the business processes with
the object-oriented software specification.

The following scenario can often depict the implementation of a new workflow management
system in a corporation: a consultant works together with the users to describe the corporate
business processes to be supported by a software solution. The team of developers receives the
consultant's description, but they have trouble understanding the business terminology and find
the description too informal to use for implementing the system. The developers write their own
system specification from a technical point of view. When the system specification is presented to
the users, they do not quite understand it because it is too technical. They are, however, forced to
accept it in order to move forward.

This approach can easily result in a system that does not meet the requirements of the users
because often the users, the consultants and the developers don't speak the same language. Such
communication problems can make it difficult to turn a description of business processes into a
technical software specification that all parties can understand. In addition, because a technical

system specification that is not fully understood by the actual users of the system is used,
software system becomes difficult to use.

The challenge is to model business processes and business systems in a way that is both precise
and user-friendly. Each symbol describing a business process should be intuitive for the user and
have defined semantics, so that the developers can use the description as a general, but precise
specification of the software system.

UML is rich and complicated notation for describing software systems. The notation is perhaps
too rich to be intuitive and user-friendly. However, UML has two advantages, which make it
suitable for representing workflow management systems. First, UML is the generally accepted
notational standard in the software community and second, UML can be used on a general level,
where implementation details are suppressed. The UML diagrams shown in the next section are
very similar to those that domain experts are already using intuitively. Moreover, their semantics
are defined precisely. The same diagrams can be adorned with implementation details for
software design purposes, if necessary.

The description of business systems consists of a description of processes and static structures.
The most intuitive model of a process is a sequence of activities or tasks, performed in order to
achieve a goal (Alexander, 1998). Therefore, the UML sequence diagram and the UML activity
diagram are suitable for a user-friendly, yet precise, specification of business processes. Static
structures, such as an organizational chart, can be represented by UML static structure diagrams
without implementation details. Graphical representation of implementation details is often
misleading for non-UML experts, for example, navigation arrows are often mistaken for flows. It
is advisable to use only a certain subset of UML representation options. For example, it is better
to show compositions by placing elements inside each other, rather than by using associations
with filled diamonds. Various properties can be represented by text, rather than by UML symbols,
for example, the text «refine » is easier to understand than a dashed line with a triangular arrow.

2. Mapping between Workflow Concepts and UML Concepts

This section includes examples of workflow concepts represented in UML. The purpose of this
section is only to give a general guideline on how to map workflow common concepts to UML
because the details are easy to derive from UML Semantics and Notation Guide (UML Notation
Guide, 1997). Every construct of workflow management systems can be depicted by a UML
symbol with an appropriate stereotype.

Fig. 1 shows examples of representation of business processes, business objects and team roles in
UML. Business objects are represented by classes and objects in UML. Classes represent business
objects without identity, such as an invoice. Objects represent business objects, which have
identity, such as the invoice with the number VM 4/55. Business processes1 are represented by use
cases and use case instances. The use cases are definitions of business processes in terms of goals,
responsibilities, preconditions and postconditions. The use case instances are concrete sequences
of events. Workflows are automated business processes. They can be represented as use cases or
use case instances with a stereotype «workflow». Team roles are represented by classes and
objects in UML. Classes represent types of team roles, objects represent concrete workers playing

1 In this paper, I assume that business processes are collaborations between business objects, actors and other
instances inside a business system. Please see the section “Structuring the project repository” for details.

the role. All the symbols can be adorned with an appropriate stereotype, such as «business
object», «business process» and «team role». Each stereotype can be represented either by text or
by a specific icon.

Invoice VM 4/55: Invoice

Shipment :Shipment

Developer Jim: Developer

Business Object

Business Process . . .

Team Role

«workf low»
Make Invoice

«workf low»
:Make InvoiceWorkflow

Fig. 1 Representation of a business object, a business process and a team role in UML.

Fig. 2 shows an example of a team structure. The team roles are represented as object instances,
which allows for specifying the number of employees in each role. The customer satisfaction
team has three developers, two testers, one product manager and one person in the user education
role. The group of roles, called the customer satisfaction team, is represented by the package
symbol. The group of roles might also be represented as an object – as a composition of roles. If
the team is represented as an object and the relationships between the team and the roles are
composition relationships, then, according to the UML metamodel, a specific role instance cannot
be part of more than one team at the same time. If the team is represented as a package, a specific
role instance can be a part of several teams at the same time.

:Project
Manager

:Developer :Tester
:User

Educat ion
:Product
Manager

Customer Satisfaction Team

3 2

Fig. 2 UML static structure diagram representing a team structure.

Fig. 3 represents the instance of the business process. The actor customer places an order, and
then an unspecified worker in the sales department validates the order. If the order is valid, the
worker in sales invokes an instance of another business process company ships an item. This type
of diagram is not explicitly mentioned in the UML Notation Guide. However, it conforms to the
UML metamodel. The symbols at the top of the object lifelines represent classifier roles, which in
Fig. 3 are the actor role, the object role and the use case role.

:Customer

Place an order

[Order OK]: Invoke

Validate the order

:Sales
:Company ships

an i tem

Fig. 3 UML sequence diagram representing the instance of the business process

Fig. 4 is the UML use case diagram, representing static relationships between business processes.
The business processes describe collaborations of the organization with the actor customer.
Please note that in UML version 1.1, use cases cannot communicate with each other and they are
always started by a signal from the actor. This leads to difficulties in modeling situations in
which a use case is started during execution of another use case when a specific condition is met.
In such situations, use cases are initiated by the actor through communication with another use
case and not by any specific starting signal from the actor. For example, the use case company
ships an item is started by an object inside the organization if the customer’s request has been
evaluated as valid. This use case instance is not directly started by the customer. I hope that the
next version of UML will weaken this restriction about communications between use cases.

Company ships
an item

Customer
requests an item

Customer pays
for an item

Customer
returns an item

Customer

«extends»

{precedes}

Fig. 4 UML use case diagram representing static relationships between business processes

The UML use case diagram cannot easily represent the order of use case instances, for example,
that first the customer requests an item, then the company ships the item and finally, the customer
pays for the item. One of the solutions is to use constraints {precedes} or dependencies
«precedes» between use cases. Similar relationships exist in OML (OPEN modeling language),
see (Henderson-Sellers and Graham, 1997). Robert C. Martin suggested to use the keyword
follows instead of the precedes, please see (Martin R., 1998). The reason for this replacement is
that the dependency «follows» points in the opposite direction to the dependency «precedes». The
dependency «follows» points in the direction usual for the dependency – from the dependent
element to the independent element. Which one is more intuitive is an open question. However,

the diagram with constraints or dependencies is still a static structure diagram and does not
represent a scenario.

:Company ships
an i tem

:Customer
requests an i tem

:Customer pays
for an item

:Customer
returns an i tem

[request OK]: invoke

invoke

[customer not satisf ied]: invoke

:Customer

invoke

Fig. 5 UML sequence diagram represents interactions between business processes and actors.

An actor can use a system in a way that initiates use cases in a particular order. Such a scenario –
a sequence of use case instances – can be represented by use case sequence or collaboration
diagrams, see Figs. 5 and 6. In contrast to object interaction diagrams, where a scenario is
described as a sequence of messages, the use case interaction diagram describes the scenario as a
sequence of use cases. This diagram is the only UML diagram that can describe a scenario
consisting of instances of other scenarios. The messages invoke in Fig. 5 represent constructors of
the use cases and they map to the signals from the actors to the use cases. They can also be named
according to the first operation in each use case, such as invoke request, invoke shipment and
invoke payment. Except for these messages, the use case interaction diagram can show other
messages exchanged between the actor and the system and describe complete conversations
between use case and actor.

:Company ships
an i tem

:Customer
requests an i tem

:Customer pays
for an item

:Customer
returns an i tem

:Customer

1:invoke

1.1[request OK]: invoke

3:invoke

«extends»

{precedes}2 [customer not satisf ied]: invoke

Fig. 6 UML collaboration diagram represents interactions and relationships between business
processes and actors.

The use case collaboration diagram is illustrated in Fig. 6. The use case collaboration diagram
represents a scenario consisting of instances of business processes. Unlike the use case sequence
diagram, the use case collaboration diagram shows both use case relationships and messages
exchanged between use case instances and actor instances.

The use case interaction diagrams describe only typical scenarios consisting of use case instances.
Therefore, they cannot represent all allowable sequences of use case instances. The allowable
order of use case instances belonging to a use case package can be specified in the lifecycle of the
use case package. The lifecycle of the use case package is represented by a state diagram, activity
diagram of Backus-Naur form (BNF)2, in which states, action states or BNF statements map to
the use cases of the use case package. The use case package lifecycle is a precise representation of
the use case package behavior. It can, however, be difficult to develop it correctly, especially in
complex cases. The use case interaction diagram is easy to develop, but it describes only typical
scenarios consisting of use cases in the package.

Customer
requests an item

Company ships
an item

Customer pays
for an item

Customer
returns an item

H

Request is OK

Payment
comes

Payment
comes

Customer is
not satisfied

Request is OK

Item shipped AND
customer is
not satisfied

H

Request is
not OK

Customer has payed for an i tem AND
has not returned the item within the period

Reuqest is not OK
/ Return payment

Fig. 7 UML activity diagram can represent allowable order of business processes

Fig 7 represents the UML activity diagram representing the lifecycle of the use case package
order management. The activities on this activity diagram correspond to the use cases discussed
in Figs 4, 5 and 6.

Please note that the UML metamodel does not define any mapping from states or action states to
use case instances. Such mapping might be defined by the development process, similar to the
approach by Martin and Odell, in which states of the subsystem indicate candidate classes in the
subsystem, (Martin, J. and Odell, J., 1998). However, other development processes might define
the semantics of the use case package lifecycle in a different way. For example, the purpose of
the use case package lifecycle might be to specify the allowable order of subsystem interface
operations in the scope of the use case package.

There is one more significant difference between the use case interaction model and the use case
lifecycle – their placement in the project repository is different and their relationships to other

2 Please see (Hruby, 1998) for inspiration on how to use BNF for specifying lifecycles.

design artifacts are different. The artifact use case interaction model is related to the artifact use
case model. The artifact use case package lifecycle is related to the artifact use case package,
which is one level of abstraction higher than the corresponding use case model and use case
interaction model. Please see Fig. 8 and the next section for details.

package
responsibil i ty

Use Case
Package

Responsibility

Use Case
Package
Lifecycle

Use Case Model
Use Case

Interaction
Model

«refine»

package
responsibil i ty

al lowable
order of
use cases

relat ionships between
use cases and actors

«refine»

interactions between
use cases and actors

input
events

«refine»

candidates
for use cases

Use case level
of abstraction

Use case package
level of abstraction

types

instances

«conform»

allowable order
of use cases

typical order
of use cases

Fig. 8 Relationships between artifacts in the use case view in the project repository. The
notation is modified UML. For better clarity, dependencies were adorned by role ends3.

3. Structuring the Project Repository

In well-structured design specification, the required information about business processes and
software systems can be easily located and closely related information is linked together. The
structure should also give an overview about the completeness and consistency between design
artifacts. The specification should act as common ground between business experts, consultants
and software developers. The structure should also support clear separation of concerns, so that
business people - and not the developers - define all business rules. This section identifies
relationships between business processes and software design artifacts, which can be used for
structuring the project repository. This section gives a guideline for structuring information about
business processes and about their relationships to software design artifacts. Please see reference
(Hruby, 1998) for concrete examples of the repository structures.

The structure is based on the assumption that business processes (represented as use cases in
UML) are collaborations between business objects, actors, workers or other instances in a
business system. I assume that definitions of business processes (use cases) are types of
collaborations, specifying the collaboration responsibility, goal, precondition, postcondition and
system operations involved in the collaboration. Business process instances (use case instances)
are instances of collaborations, specifying concrete sequences of actions and events, system states
and state transitions during the collaboration.

During the development process, software architects, designers and developers identify certain
information about the software product. Examples of such information are the use cases, the
software architecture, the object collaborations and the class descriptions. The information can be

3 In the UML metamodel version 1.1, dependencies do not have role ends. However, the role ends can be specified
as tags of dependencies. Please see the UML tips and tricks on my web page for details.

very abstract, such as the vision of the product, or very concrete, such as the source code. In this
paper, I call such pieces of information about the software product design artifacts.

We must realize that there is a difference between a design artifact and its representation. The
design artifact determines the information about the business system, and the representation
determines how the information is presented. Some design artifacts are represented in UML,
some are represented by text or by tables and some are represented in a number of different ways.
For example, the class lifecycle can be represented by a UML statechart diagram, an activity
diagram, state transition table or in Backus-Naur form. The object interactions can be represented
by UML sequence diagrams or by UML collaboration diagrams. The class responsibility is
represented by text.

A useful description of a workflow management system is based on precisely defined design
artifacts, rather than on diagrams. This section and the following section discuss a structure of the
design artifacts, which provides clear tracing of information describing business processes,
business rules, a software architecture and a design of the business system. The structure can
easily be extended to cover other aspects of the business system, such as the team structure and
the project planning.

Fig. 9 shows relationships between design artifacts specifying business processes and logical
design of the software system. Artifacts are structured according to the level of abstraction: the
organizational level, the system level, the architectural level and the object level. At each level of
abstraction and in each view, the business system can be described by four design artifacts: static
relationships between classifiers, dynamic interactions between classifiers, classifier
responsibilities and classifier lifecycles. UML classifiers are class, object, interface, subsystem,
use case, node and component.

The classifier model specifies static relationships between classifiers. The classifier interaction
model specifies interactions between classifiers. The design artifact called classifier specifies
classifier responsibilities, roles, and static properties of classifier interfaces (for example, a list of
classifier operations with preconditions and postconditions). The classifier lifecycle specifies
dynamic properties of classifier interfaces (for example, the allowable order operations and
events) and classifier state machine. Please see (Hruby, 1998) for more information about
applications of the structure to other aspects of software design, such as the testing, database
design, user interface and user documentation aspects.

The organizational level specifies the responsibility of an organization (such as a company,
school, or government body) and the business context of the organization. The artifact
organization specifies responsibility and relevant static properties of the organization. The
artifact organization model specifies relationships of the organization to other organizations. The
artifact organization business process specifies the business process with the organizational
scope in terms of the process goal, precondition, postcondition, business rules that the process
must meet and other relevant static properties of the process. This business process is a
collaboration of the organization with other organizations. All collaborations of the organization
with other organizations are described in the artifact organization business process model, see the
dependency «collaborations» in Fig. 9. The instances of organization business processes are
specified in the artifact organization interaction model in terms of the interactions of the
organization with other organizations. The organization business processes can be refined into
more concrete system business processes, see the dependency «refine» in Fig. 9. Allowable order

of the system business processes is specified in the artifact organization business process life
cycle. The organization business process interaction model specifies typical sequences of
business process instances, see the dependency «instance» in Fig. 9. The realization of the
organizational business process is specified by the interactions between the software system and
its users (team roles) see the dependency «realize» in Figs. 9 and 10.

Business Process View
(Use Case View in UML)

Business Objects View
(Logical View)

Subsystem
Business

Process Model

Subsystem
Business Process
Interaction Model

Subsystem
Business Process

Lifecycle

Subsystem
Business
Process

Subsystem
Subsystem

Lifecycle

 Subsystem
Model

Subsystem
Interaction

Model

A
rc

hi
te

ct
ur

al
 L

ev
el «instance»

«collaborations»

Business Object
Business Object

Lifecycle

Business Object
Model

Business Object
Interaction

Model

O
bj

ec
t L

ev
el

«refine» «realize»

System
Business

Process Model

System
Business Process
Interaction Model

System
Business Process

Lifecycle

System
Business
Process

System / Actor
System / Actor

Lifecycle

 System Model
System

Interaction
Model

S
ys

te
m

 L
ev

el

«instance»

«collaborations»

«realize»«refine» «refine»

«realize»«refine» «refine»

Organization
Business

Process Model

Organization
Business Process
Interaction Model

Organization
Business Process

Lifecycle

Organization
Business
Process

Organization
Organization

Lifecycle

 Organization
Model

Organization
Interaction

Model

O
rg

an
iz

at
io

na
l

Le
ve

l

«instance»

«collaborations»

Code

«refine»

C
od

e
Le

ve
l

Fig. 9 Design artifacts describing the software system in the logical and business process
views.

The system level specifies the context of the software system and its relationships to its actors.
The artifact system specifies the system interface, the system operations with responsibilities,
preconditions, postconditions, parameters and return values. The artifact actor specifies the actor
responsibilities and interfaces, if they are relevant. The system lifecycle specifies the allowable
order of system operations and events. The system model specifies relationships between the
software system and actors (other systems or users), and the system interaction model specifies
interactions between the software system and actors. These interactions are instances of system
business processes, see the dependency «instance» in Fig. 9. The artifact system business process
specifies the business process with the system scope in terms of the process goal, precondition,
postcondition, the non-functional requirements of the process, business rules and other relevant
static properties. This business process is a collaboration of the system with other systems and
users. All collaborations of the system with its actors are described in the artifact system business
process model, see the dependency «collaborations» in Fig. 9. The dynamic properties of the
business process interface, such as the allowable order of system operations in the scope of the
business process, are specified in the system business process life cycle. The system business
process interaction model specifies typical sequences of business process instances. The system
business processes can be refined into subsystem business processes, see the dependency «refine»
in Fig. 9. The realization of the system business process is specified by the subsystems at the
architectural level, their responsibilities and interactions, see the dependency «realize» in Fig. 9.

The architectural level defines subsystems (components), their responsibilities, interfaces,
relationships and interactions. The artifact subsystem specifies the subsystem interface, the
subsystem operations with responsibilities, preconditions, postconditions, parameters and return
values. The subsystem lifecycle specifies the allowable order of subsystem operations and events.
The subsystem model specifies relationships between the subsystem and other subsystems, and
the subsystem interaction model specifies interactions between the subsystem and other
subsystems. These interactions are instances of subsystem business processes, see the dependency
«instance» in Fig. 9. The artifact subsystem business process specifies the business process with
the subsystem scope. This business process is a collaboration of the subsystem with other
subsystems, systems and users. All collaborations of the subsystem with is actors are described in
the artifact subsystem business process model, see the dependency «collaborations» in Fig. 9. The
dynamic properties of the subsystem business process interface, such as the allowable order of
subsystem operations in the scope of the business process, are specified in the subsystem business
process life cycle. The subsystem business process interaction model specifies typical sequences
of business process instances. The realization of the subsystem business process is specified by
objects at the class level, their responsibilities and interactions, see the dependency «realize» in
Fig. 9.

The object level provides details about the design of the subsystem in terms of the business
objects, their responsibilities, relationships and interactions. The business object model specifies
static relationships between business objects. The business object interaction model specifies the
design of subsystem operations in terms of interactions between business objects. The artifact
business object specifies the business object responsibility and the static properties of business
object interfaces, such as the interface operations with preconditions and postconditions. The
business object lifecycle specifies the allowable order of interface operations.

Fig. 10 shows design artifacts describing the team structure of the organization. In fact there is no
significant difference between the structure of artifacts describing a software subsystem and the
structure of artifacts describing a team. Roles of team members can be shown as stereotyped

classes in UML. The artifact role specifies responsibilities of the worker role and other relevant
static properties of the role. The artifact role lifecycle specifies dynamic properties of roles, their
states and to which events they respond. The artifact role model specifies static relationships
between roles. The member level business process specifies collaborations of the team member
role with other team member roles, see the dependency «collaborations» in Fig. 10. The instances
of these business processes are specified in the artifact role interaction model in terms of
interactions between role instances, see the dependency «instance» in Fig. 10.

The design artifact called team is a package of roles. The team specifies the responsibility of the
team and relevant static properties of the team. Dynamic properties of the team are specified in
the artifact team life cycle. The artifact team model specifies static relationships between teams.
The team level business process specifies collaborations of the team with other teams, see the
dependency «collaborations» in Fig. 10. Instances of the team level business processes are
specified in the artifact team interaction model, see the dependency «instance» in Fig. 10. The
realizations of the team level business processes are specified by interactions of the team
members and by interactions of the team members with the software system, see the dependency
«realize» in Fig. 10. The pattern of design artifacts can be applied at the higher levels of
abstraction4 in a similar way to that shown above.

Role Model
Role Interaction

Model

Role Role Lifecycle

T
ea

m
 M

em
be

r
Le

ve
l

«refine»

T
ea

m
 L

ev
el

Member Level
Business

Process Model

Member Level
Business
Process

«collaborations»

«instance»

Team View
Business

Process View

Team Model
Team Interaction

Model

Team Team Lifecycle

Team Level
Business

Process Model

Team Level
Business
Process

«collaborations»

«instance»

«realize»

Organization
Organization

Lifecycle

Organization
Business
Process

«realize»«refine»

O
rg

an
iz

at
io

n
Le

ve
l

Fig. 10 Design artifacts describing the software system in the team and business process views.

4 Organizations with deep organizational structure can have a large number of levels, such as the team member level,
the section level, the department level, the division level, the company level and the corporation level. Small
organizations or the organizations with a flat structure might be sufficiently described by three levels as shown in
Fig. 10: the team member level, the team level and the organization level.

The structure of design artifacts described in this section can be simplified in two ways:
• by using only a certain subset of design artifacts.
• by creating larger design deliverables by joining closely related design artifacts.

Using a subset of design artifacts may not lead to the loss of information because the UML
system of diagrams is not orthogonal. This means that the same information can be specified in
two or more different UML diagrams. For example, both the static structure diagram and the
object collaboration diagram specify relationships between objects. Both statecharts and
interaction diagrams specify messages between objects. Because the same information can be
specified in several places, developers can produce only a certain subset of design artifacts, or
the artifacts must be checked for consistency.

For pragmatic reasons, designers can create larger deliverables containing several closely related
artifacts. For example, classifier responsibilities and lifecycles are always related to and can be
joined into one document. It is also possible to combine organizational, system, subsystem and
class use case diagrams into one large use case diagram, providing that use case levels are
clearly distinguished. Similarly, system, subsystem and business object static structure diagrams
and corresponding interaction diagrams at all levels can be joined into one document. It is also
compatible with UML semantics to join the static structure diagrams, the component, node and
use case diagrams within each level. In this way designers can show static relationships between
use cases, actors, subsystems, business objects, team members and business processes in one
large static structure diagram, although the UML notation guide does not explicitly mention
such a combined static structure diagram. Please see (Hruby, 1998) for details on how to
simplify the structure of design artifacts described in this section.

4. Summary

This paper discussed the representation of business systems in UML, with an emphasis on
workflow management systems. The paper described mapping between typical business concepts
and UML concepts and suggested the structure of design artifacts for tracing the information
between definitions of business processes and the object-oriented software design. The structure
assumes that business processes can be considered as collaborations between business objects,
team roles and other instances in a business system. The structure is based on a pattern of four
mutually related design artifacts that represent classifier relationships, interactions,
responsibilities and lifecycles. The pattern was applied at different levels of abstraction and in
different views on a business system. The pattern can specify various other aspects of the design
of business and software systems.

References

Alexander, I, A.: A Co-Operative Task Modeling Approach to Business Process Understanding,
workshop on Object-Oriented Business Process Modeling, ECOOP 98, Brussels, Belgium, July
20-24, 1998.
Henderson-Sellers, B, Graham, I., The OPEN Modeling Language (OML) Reference Manual,
SIGS Books, NY, 1997, available at http://www.csse.swin.edu.au/cotar/OPEN/OPEN.html
Hruby, P.: Structuring Design Deliverables with UML, <<UML>>’98, Mulhouse, France, June 3-
4 1998, available at http://www.navision.com/default.asp?url=services/methodology/default.asp
Hruby, P.: A Pattern for Structuring UML-based Repositories, OOPSLA'98, Vancouver, Canada,
October 18-24, 1998.

Martin, J., Odell, J. J.: Object-Oriented Methods: a Foundation, Prentice Hall, Inc., 1998
Martin, R. C.: RE: RE: (OTUG) use cases: abstract and concrete (<<precedes>>), Mailing list
OTUG, June 1997, at http://www.rational.com/HyperMail/otug/hypermail/9807/0195.html
UML Notation Guide, version 1.1, Rational, 1 September 1997, at http://www.rational.com/uml
Stark, H., Lachal, L.: Ovum Evaluates Workflow, Ovum Ltd. 1995.

