

 1

Create Development Process On-the-Fly

Pavel Hruby
Navision a/s

Frydenlunds Allé 6
2950 Vedbaek, Denmark

E-mail: ph@navision.com

Acknowledgement

I would like to thank to Jutta Eckstein for shepherding this paper, and for her useful suggestions
and comments, and Jens Coldewey for forwarding me the comments from the writers workshop. I
do, of course, take full responsibility for any omission or errors.

Introduction and Terminology

This paper represents work in progress towards a pattern language addressing the topics of creating
and adapting development processes. The intended user of this pattern language is a methodologist,
that is, a member of a development team, whose interest is continuous improvement of software
development processes. Depending on the organization, this role is also often fulfilled by quality
assurance, managers and developers.

The term process is used to mean a comprehensive set of best practices that cover both static and
dynamic aspects of software development. The term development scenario is used to mean the
dynamic aspects of software development, such as a sequence of steps and activities during
software projects. The term artifact covers static information about a software product, determined
or created during software development processes.

General Context

You are using a standard software development process, such as the Rational Unified Process,
Extreme Programming, Catalysis or Fusion. Software development processes describe sets of
activities that result in certain specifications concerning the software product. These specifications
can be very general, such as the vision of the product or a user story, or very concrete, such as the
source code. Other examples are functional and unit tests, object collaborations and class
descriptions. Software development processes also describe activities resulting in management
products, such as project plans, organizational structures and responsibilities of team members.

You realize that the standard software development process can be successfully used as a general
guideline, but it often does not match the needs of specific projects in all details.

 2

General Forces

1. In order to improve a development process, an organization will generally either adopt and
customize a standard development process, or develop its own process. The process consists of
descriptions of activities to be performed and software development and management artifacts
to be delivered by each project. However, it is not possible to determine a sequence of activities
and a set of software development and management artifacts that fits all the projects, because
the projects vary in size and complexity.

2. The organization wants to customize the development process at the beginning of each project.
However, unexpected changes during projects prevent any up-front determination of which kind
of customization (which software development and management artifacts) will be needed.

3. The team decides to use a standard development process and customize it on the fly during the
project. This means disregarding some software development and management artifacts and
possibly including new software development and management artifacts not specified by the
process. However, the team does not know any simple rule for contracting or extending the
process in a consistent manner.

4. The project repository contains a set of software development and management artifacts that
reflects the project needs at each specific time, but which might be different from what a
standard process requires. The team wants to get an overview of the completeness of the
specification and the consistency between software development and management artifacts in
the project repository. The standard process contains consistency assessment procedures, such
as checklists, but they cannot be used, because the standard process was not the driving force
behind the selection of the software development and management artifacts in the repository.

General Problem

Have you ever tried to apply a standard development process, and realized that you do not always
perform all the activities in the specified order? Have your software development process
sometimes forced you to create development artifacts you did not need? Have you sometimes want
to specify something interesting about the system, but the process did not suggest any suitable
software development and management artifact, diagram or document, for your specific
information?

Have you ever wanted to know a simple rule for extending and contracting the process in a
consistent manner?

Pattern Map
This pattern language consists of seven patterns. Fig. 1 shows the context of the pattern language
including patterns not described in this paper. This paper focuses on the process analysis branch. It
describes the introductory pattern, five process analysis patterns and one process improvement
pattern.

 3

Create
Process

On The Fly

Start here

Process
Analysis
Patterns

Process
Creational
Patterns

Existing
processes

Customization

Experience

Process
Improvement

Patterns

Fig. 1 Context of the pattern language

The pattern map is illustrated in Fig. 2. The rectangles represent patterns of the language and the
arrows represent their resulting context.

Artifact
Relationships

Every Artifact
has Lifecycle

Micro Process

Capture
Artifacts

How to determine
effects of events?

Dynamics of
software
development

How to determine
consistency?

Process
Relationships

Macro Process

Dependencies
between activities?

Which artifacts
are involved in
macro process?

Dynamics of
software
development

Create
Process On

The Fly

Artifacts not
known up-front

Cannot be
customized
up-front

Cannot be
customized
up-front

Improve the
Process

Continuously

How to record
experience
'on-the-fly'?

Start here

Fig. 2 Pattern map

Introductory Pattern: Create Development Process On-The-Fly

Context

You have identified development and management artifacts; see Pattern 1, “Capture Artifacts”.
You have specified major process activities, see Pattern 3, “Macro Process”, and the scenarios and
tasks, see Pattern 4, “Micro Process”.

 4

Forces
1. You have specified the software development and management artifacts of your development
process, but you realize that various projects and project situations require various subsets of the
specified artifacts. Moreover, it is desirable to change form, representation, and other attributes of
the artifacts in specific development contexts.
2. You have specified a development scenario, but you realize that no real project follows it on
100%. However, you still want to have a description of the development process, even though the
concrete scenarios in each project are different.
3. You want to customize the scenario at the beginning of each project. However, unexpected
changes during projects prevent any up-front determination of which kind of customization (which
software development and management artifacts in which order) will be needed.

Problem

How to change the development scenario (the macro and micro processes) during the project?

Solution

Instead of specifying and following a firm development process, describe a process framework and
customize it to fit each specific development problem. According to Pattern 2,” Artifact
Relationships”, define a process by specifying dependencies between software development and
management artifacts, rather than by specifying a concrete scenario. Let project participants pick up
the development and management artifacts, as they need it.

Fig. 3 illustrates how to use the framework and “create a development process on-the-fly”. During
software development, create (instantiate) the appropriate software development and management
artifacts on demand, depending on the problem and the concrete situation. Apply Pattern 1,
“Capture Artifacts”, and use the purpose properties to select those software development and
management artifacts that you need in a particular situation in order to move forward. The quality-
assurance activities will guarantee consistency between the software development and management
artifacts. The constructor activities might have preconditions that require that other software
development and management artifacts must exist before other software development and
management artifacts are created. Preconditions therefore indirectly imply an order in which the
software development and management artifacts may be created. For example, in order to create the
class lifecycle, the software development and management artifact class must be created first.
However, the order required by preconditions of constructors and quality-assurance activities is
much less restrictive than a specification given by traditional design processes.

 5

Process Framework

Project A

Project B

«instantiate»

«instantiate»

«instantiate»

«instantiate»

«instantiate»

«instantiate»

1

2.1

3

3.1
3.2

2

2

1

3.1

1.1

1.2

4.1.1

3

Process
Instances

4.1 4

1.2

«instantiate»

3.3

4

1.1

2.1
2.2

 . . . Instantiation

 . . . Interaction

Fig. 3 Creating specific development processes on-the-fly by instantiating the framework

Known Uses
OPEN [5] is an object-oriented framework for software development processes. OPEN provides
descriptions of a range of activities, tasks and techniques, which can be tailored specifically to each
individual organization or individual project. OPEN has a well defined metamodel, consisting of
projects, activities, tasks, deliverables, techniques and sequencing rules.

The OPEN framework can create specific processes by choosing the process components that meet
specific demands in specific situations. A concrete process based on OPEN is created by selecting
the activities and tasks necessary to perform the project. The execution of the activities is guarded
by pre- and postconditions on tasks. The postconditions include testing requirements and
deliverables.

Extreme Programming [1] defines three management and four development artifacts. The
management artifacts are the release plan, task and iteration plan, and the development artifacts are
the user story, unit test and acceptance test and code. Within each iteration, extreme programming
does not define any order in which development artifacts are created or updated – it lets developers
select them according to the specific situation. It does, however, specify the dependencies between
management and development artifacts. The iteration plan and user stories, selected for
development, do not change within the iteration.

Resulting Context

We have the problem how to record experience and improve the process ‘on-the-fly’. This problem
is resolved in Pattern 5, Improve Process Continuously.

 6

Pattern 1: Capture Software Development and Management Artifacts

Context

Various software development processes reflect “best practices” of various aspects of software
development. You want to study and use the “best practices” from various processes in the light of
your own experience. Various software development processes are described in various styles,
which makes it difficult to compare them.

Forces

1. You want to compare various software development processes, but they are described in different
and mutually inconsistent ways.
2. You want to select “best practices” that reflect your specific needs in your current situation. It is
difficult for you to find and categorize the “best practices”, which are common across various
projects.
3. You realize that the order of development steps is often different in different processes, but you
want to capture the information, which is common across various processes.

Problem

What to focus on when comparing various software development processes?

Solution

Concentrate on work results rather than chronological order and sequencing of activities. For
example, the primary deliverables of (almost) all software projects are code and tests. Many
projects create, in addition, a project plan, and requirements specifications of various kinds.

Concentrate on what kind of information you want to specify, rather than how this information is
represented. In other words, make a distinction between the software development and management
artifact (the information itself) and the representation of the information (the UML diagram, CRC-
card, table, text).

For each software development and management artifact identify constructor (a process or activity
how to create the artifact), quality assurance (a test, procedure, activity or check-list determining the
quality of the artifact, its completeness and consistency of the artifact with other artifacts),
information specific to artifact type, such as typical representation, and information specific to
artifact instance, such as the concrete representation of the artifact (text, UML diagram, table).

 7

 Constructor
 Quality-assurance

«instance-specific attributes»
 Name
 Version
 Status
 Representation
 Created / modified by / when

«type-specific attributes»
 Purpose
 Recommended representation

«Artifact Type»
Object Interaction Model

Recommended
Representation

•UML sequence diagram.

•UML collaboration diagram

Quality Assurance

•Each class or package
in the artifact class
relationships appears in the
artifact object interaction
model.

•Scenario satisfies
postcondition of the
interface operation.

Purpose
Design interface
operation in terms of
object interactions,
or to design dynamic
part of collaboration

Constructor
1. Identify relevant objects
involved in interface operation
execution
2. Identify controller and
collaborators
3. Decide on messages between
objects
4. Draw an interaction diagram
for each interface operation

Fig.4. Specification of the artifact type object interaction model

Known Uses

The Rational Unified Process [6], for most of the artifacts, specifies guidelines, purpose, properties,
timing, responsibility and for some artifacts also tailoring. The “guidelines”, “timing” and
“tailoring” cover information about how to create the artifact and the quality assurance. The
“purpose”, and “responsibility” are artifact type properties, the “properties” are the artifact instance
properties.

The Microsoft Solutions Framework [7] provides a “template” and “checklist” for most artifacts,
that is, constructor and quality assurance. The Microsoft Solutions Framework specifies the
“purpose” and the “owner” of the artifact, which are artifact type properties. The templates contain
fields for artifact instance properties.

Extreme programming has seven well-defined development and management artifacts: user story,
release plan, acceptance test, iteration plan, task, unit test and code. The constructors and quality
assurance methods are expressed as extreme programming practices, such as metaphor, small
releases, simple design, pair programming, collective code ownership and coding standards.

Resulting Context

You specified which development and management artifacts to create during software process, how
to create them and how to assess their quality. However, development artifacts are often related:
they depend on each other, refine each other, or might just refer to each other. Which relationships
exist between software development and management artifacts? This context is resolved in Pattern
2, Artifact Relationships.

 8

Pattern 2: Artifact Relationships
Context

You identified a number of development and management artifacts, which describe the information
about software or management products. This information could be very general, such as the vision
of the product, or very concrete, such as the source code and test scripts. Other examples are use
cases, object collaborations, class descriptions and test cases. You also specified information about
management products, such as projects, project plans, organizational structures and job
descriptions. All these artifacts were specified by various people, and it becomes difficult to get an
overview and navigate through the repository.

Forces

1. You identified a number of development and management artifacts, but it becomes difficult to
overview them, and find a specific artifact in a project repository.
2. You would use a standard development process for structuring the artifacts, but the artifacts that
reflect your needs and experience are different from the artifacts of the standard process.
3. You cannot anticipate which kinds of artifacts will be added to the repository in the future, but
you’d still like to maintain a succinct structure of the repository.

Problem

Do we have all the artifacts we need?

Solution

Do not concentrate on how the artifacts are represented (such as how they are represented in the
UML), but concentrate on what kind of system information they describe. Identify views and
viewpoints relevant to your concerns. Examples of the development viewpoints are the logical
viewpoint, the use case viewpoint, the component viewpoint, the testing viewpoint and the design
patterns viewpoint. Examples of the management viewpoints are the project viewpoint and the team
viewpoint.

Each view contains development and management artifacts – work products – of the particular
concern at various levels of granularity. The levels of granularity refine each other; see Fig. 5.

Within the scope of a viewpoint and the level of granularity, four development and management
artifact types can be identified. The artifact called work product relationships specifies static
relationships between work products. Examples of this artifact are the class model, use case model
and database schema. The artifact called work product interactions specifies interactions between
work products. Examples are any information represented by UML sequence diagram or
collaboration diagram, such as object interactions. Examples of the work product are the code
module, CRC card, test, use case, project and team. The work product lifecycle specifies dynamic
properties of the work product. Examples are any information represented by UML statechart and
activity diagram, such as the allowable order of class interface operations, or a status of a project.

 9

Work Product
Package

Package
Lifecycle

Package
Relationships

Package
Interactions

Work Product
Work Product

Lifecycle

Work Product
Relationships

Work Product
Interactions

«refine»

Package
Level

Work Product
Level

V
ie

w
p

o
in

t

V
ie

w
p

o
in

t

«refine»

«trace»

«trace»

Work Product
Package

Package
Relationships

Work Product
Package

Package
Relationships

«refine»

...

Fig.5. Relationships between artifacts describing work products

Known Uses

In the UML [8], examples of ‘work product relationships’ are the class diagram and the use case
diagram; examples of ‘work product interactions’ are the sequence diagram and the collaboration
diagram; examples of ‘work product’ are the class and use case; examples of ‘work product
lifecycle’ is the statechart and activity diagram. Example of work product package is a subsystem;
example of package relationships is a class diagram containing subsystems.

In software testing, examples of ‘work product relationships’ are the test dependencies; examples of
‘work product interactions’ are the test sequences; example of ‘work product’ is the test case; and
example of ‘work product lifecycle’ is the test algorithm. Example of work product package is a test
suite.

In project management, an example of ‘work product relationships’ is the PERT chart (a chart
showing dependencies between tasks or activities); an example of ‘work product interactions’ is the
Gantt chart (showing starts and ends of tasks); examples of ‘work product’ are the project and task;
examples of ‘work product lifecycle’ are the project states (such as ahead, delayed, canceled).

The Catalysis method [9] structures development artifacts into various levels of granularity that
refine each other. The Rational Unified Process [6] structures development artifacts into four views.

 10

Resulting Context

You have described which development and management artifacts and the relationships between
them. However, this information depicts static features of a development process. For example, the
artifacts do not specify which of them to create at the beginning of the project and what is the final
deliverable. You still have a problem of identifying the dynamics of the software development
process. This problem is resolved in two patterns, Pattern 3, The Macro Process and Pattern 4, The
Micro Process.

Pattern 3: The Macro Process1

Context

You realize that in each project you perform certain activities, such as design, coding, and testing.
You perform these activities and create and update software development and management artifacts
in various orders. Some of these orders are not ad-hoc, but they often repeat in the same sequence.

Forces

1. Regular releases drive the development process to repeat certain activities in each development
cycle. You want to describe this experience and you need a suitable “placeholder” for such
information.
2. Some development scenarios have the same purpose, but they vary in concrete steps because of
different project situations. Some development scenarios vary in concrete steps because of their
different goals. You want to abstract from concrete project situations and identify repeatable
information that the development scenarios have in common.

Problem

How to identify the rhythm of the software development process?

Solution

Identify major phases (scenario types) of the software development process. Identify the purpose,
(reason, motivation) of each scenario type. In addition, specify the goal, preconditions,
postconditions, as well as the list of software development and management artifacts accessed and
modified by the scenario type.

Identify activities to be performed by each scenario type. Example of such activities is illustrated in
Fig. 6.

1 The terms macro and micro process are inspired by Object Solutions by Grady Booch, Addison
Wesley, 1996.

 11

Fig.6. Activities of the Analysis and Design Workflow of the Rational Unified Process

Known Uses
In the Rational Unified Process [6], the scenario types are called “workflows”. The Rational
Unified Process describes six core and three supporting workflows. The core workflows are the
business modeling, requirements, analysis & design, implementation, test, and deployment. The
supporting workflows are the configuration & change management, project management, and
environment. In addition, the Rational Unified Process specifies four iteration workflows: define
the system’s vision and scope, outline and clarify the system’s functionality, consider the project’s
feasibility and outline the project plan, and refine the project plan.

The Catalysis [9] process calls the scenario types “process patterns”. The Catalysis describes four
main process patterns: object development from scratch, reengineering, short-cycle development,
and parallel work. In addition, Catalysis describes a number of specialized patterns, such as
business process improvement and creating a common business model.

In the Microsoft Solutions Framework [7], the scenario types are called envisioning, planning,
developing and stabilizing.

In the OPEN process specification [5], the scenario types are called “activities”. OPEN describes 13
activities: project initiation, requirement engineering, analysis and model refinement, project
planning, build (with the subactivities evolutionary development, user review and consolidation),
evaluation, implementation planning, program planning, resource planning, domain modeling, other
projects, use of system, and bug fixing.

 12

Resulting Context

The solution of this pattern depicts the development scenario in term of activities, but it does not
show which development artifacts are created, modified or accessed within each activity. Pattern 4,
The Micro Process, addresses this problem.

Pattern 4: The Micro Process
Context
You have identified the development and management artifacts and the relationships between them.

Forces
1. The development artifacts do not imply any order in which they should be created or updated.
However, they are often created or updated in the same or similar sequence.
2. You want to capture dynamic aspects of the software development process, such as a sequence of
activities and tasks.
3. The macro process pattern captures the rhythm of the process, however, it does not specify which
development and management artifacts are created, modified and accessed within each scenario
type.

Problem
What development artifacts are created, modified, or accessed within each activity?

Solution
Consider evolution as interactions between the management and software development artifacts and
the users of the development process. Describe scenario instances as interactions between
development artifacts and users of the development process. This approach is illustrated in Fig. 7.

As an example, Fig. 7 shows the extreme programming process [1] described in terms of
interactions between team members and development and management artifacts. Extreme
programming recognizes two major roles in a development team: customers and developers.
Customers create and prioritize the user stories and together with developers create the release plan.
Developers estimate the user stories; create the iteration plan consisting of estimated tasks.
Developers create the unit tests and code. Customers design the acceptance tests. The figure shows
one specific instance of the process.

 13

User Story Release Plan Task Iteration Plan Unit Test

Customer

Create
Prioritize

Estimate

Create

Get stories

Create

Create

Integrate

Developer

Code
Acceptance

Test

Get story

Create

Create

Create

Run

Run

Refactor

Run

Get priority

Get estimation

Fig.7. An instance of one iteration of the Extreme Programming Process.

Known Uses

The Fusion process [4] describes the development scenario as a sequence of creating development
artifacts in a specific order. Using a requirements document as an input, the Fusion process creates
an object model and interface model, which result to object interaction graphs, visibility graphs,
inheritance graphs, class descriptions and program.

Microsoft Solutions Framework (MSF) [7] is a set of guidelines for developing client-server
systems. MSF is not as well known as Fusion, OPEN and Rational Unified Process, however, it is a
highly evolved product that defines a simple and efficient team model, a process model and an
application model combined in a common framework. The MSF process defines four milestones,
vision and scope approved, project plan approved, scope complete / first use, and the release
milestone. The scenario within each milestone is described in terms of development artifacts to be
completed. For example, the vision and scope approved milestone delivers the problem statement,
vision statement, user profile, solution concept, project structure and risk assessment. The project
plan approved milestone delivers the functional specification, master schedule, master plan and the
updated risk assessment.

Resulting Context

The solution of this pattern depicts the development scenario in terms of development artifacts
created, accessed and modified within each scenario type. Because this sequence is a concrete
example of a development scenario, no real projects fully follow it to all details. Therefore, we have

 14

a problem how to customize it. The Introductory Pattern, Create Development Process On-the-Fly,
resolves this problem.

Pattern 5: Improve the Process Continuously2

Context
You have identified software development and management artifacts and relationships between
them. You participate in a post-mortem meeting at the end of each project.

Forces
1.You want to record suggestions to process improvements during the project. But post-mortem
meetings are typically created at the project end, if ever.
2. Post-mortem minutes of meetings have various ad-hoc structures and searching for and finding a
specific piece of information is not easy. It takes a long time to find whether the post-mortem
minutes of meetings contain any information useful to another team.
3. It is difficult to extract patterns and similar solutions to often occurring problems from post-
mortem meeting documentation. It is difficult to evaluate and improve the quality of the
development processes.
4. Post mortem will never help to improve the process of the current project. It will perhaps help to
improve the process used in the next project, although this would probably be completely different.

Problem
How to capture knowledge gained during software development.

Solution
Record your experience by updating the elements of the framework: the software development and
management artifacts and scenario types. Update the properties, constructor and quality assurance
activities of existing artifacts. Create new software development and management artifacts as you
need them, simply by defining their properties, constructors and quality-assurance activities.

2 This pattern represents work in progress

 15

Process Framework

Project A

Project B

«instantiate»

«instantiate»

«instantiate»

«instantiate»

«instantiate»

«instantiate»

1

2.1

3

3.1
3.2

2

2

1

3.1

1.1

1.2

4.1.1

3

Process
Instances

4.1 4

1.2

«instantiate»

3.3

4

1.1

2.1
2.2

 . . . Instantiation

 . . . Interaction

«feedback»

«feedback»

«feedback»

«feedback»

«feedback»

 . . . Feedback

Fig. 8 Continuous improvement

Known Uses
Adaptive Software Development [10] organizes end-of-cycle mini post-mortems to force the
organization to learn during the project. The postmortems focus on four basic questions: what is
working, what is not working, what do we need to do more of, and what do we need to do less of.
Although the end-of-cycle reviews are not “continuous”, they illustrate increased frequency of the
feedback on the development processes.

Capability Maturity Model (CMM) [11] defines a set of quality criteria and key practices that are
used to classify software processes into five maturity levels, based on organization’s support for key
process areas. Level 5 is characterized by continuous process improvement. The CMM level 5
organization maintains plans for process improvement, has a written policy for implementing
software process improvements, the training in process improvement is required for both
management and technical staff and improvement effort is periodically improved. Unfortunately,
author is not familiar with any reference to a software organization that has reached CMM level 5.
The Capability Maturity Model at least shows that continuous improvement has been described.

References

[1] Beck, K.: Extreme Programming Explained; Addison-Wesley, 1999.
[2] Booch, G.: Object Solutions, Managing the Object-Oriented Project, Addison-Wesley, 1996.
[3] Cockburn, A.: Using "V-W" Staging to Clarify Spiral Development, available at:
http://members.aol.com/acockburn/papers/vwstage.htm
[4] Coleman, D. Arnold, P. Bodoff, S. Dollin, C. Gilchrist, H. Hayes, F., Jeremaes ,P.: Object-
Oriented Development: the Fusion method, Prentice Hall, 1994

 16

[5] Graham I., Henderson-Sellers B., Younessi H.: The OPEN Process Specification, Addison-
Wesley, New York, 1997
[6] Kruchten, P.: The Rational Unified Process, Addison-Wesley, 1998.
[7] Microsoft Solutions Framework 2.0, Microsoft, 1997.
[8] The Unified Modeling Language, version 1.4, OMG, www.omg.org
[9] D’Souza, D., Wills, A.: Objects, Components and Frameworks with UML: the Catalysis
Approach, Addison.Wesley, 1998.
[10] Highsmith, J.: Adaptive Software Development: A Collaborative Approach to Managing
Complex Systems, Dorset House, 2000.
[11] Paulk M. C. et al.: Capability Maturity Model for Software version 1.1, CMU/SEI-93-TR-024

