
An Object Model for Product
Based Development Process

Pavel Hruby

Navision Software a/s

ph@navision.dk

Good Development Process

• Easy to use

• Easy to maintain

• Good support for project management

• Flexible

• Robust and self-consistent

Workflow Model

Activity 2Activity 1

Deliverable 1

Deliverable 2

Task1
Deliverable 3

Deliverable 4Task 2

Task 3

• Activity

• Task

• Deliverable

Object-Oriented Model 1:
Activities are Objects

• Used as OPEN process description

• Tasks are object operations

• Deliverables are operation postconditions

• [Henderson-Sellers, B.: OPEN Process
Specification, 1997;
http://www.csse.swin.edu.au/cotar/OPEN/
PROCESS/index.html]

Activities are Objects:
Potential Problems

• Difficult to determine appropriate set of
activities for the project
– depends on the project characteristics (size,…)

– requires detailed knowledge of the
methodology

• Activities are defined in the core method

• Not fail-safe

Object-Oriented Model 2:
Deliverables are Objects

• Methods:
– tasks (constructors)

– quality methods (consistency, completeness,…)

• Attributes (see next slide for details):
– content

– references to other deliverables

• No “activities” in the model

Object Attributes and Methods

Kind
N a m e
References to other del iverables
Descript ion / /UML diagram, text, prototype, etc.
Project
Subsys tem
Context / / reference to the context del iverable
File&directory / / i f del iverable is code, test, etc.
Respons ib le deve loper
Audit at tr ibutes

<<const ructor>>
Procedure how to create the del iverable

<<qual i ty cr i ter ia>>
Comple teness
Simple consis tency
Semant ic cons is tency

Deliverable
{abstract}

Synops is
Requ i rements
Solut ion
Not covered issues
Motivat ion (benef i ts)
Consequences (cos ts)
Target group (s takeholders)
B reakdown
Metr ics (t ime est imates)
C o m m e n t s

<<const ructor>>
1. Brainstorm, or obtain suggest ions of
requ i rements
2. Ident i fy stakeholders
3. Modify context document in the l ight of
stakeholder analysis.

<<qual i ty cr i ter ia>>
Document is complete in the l ight of s takeholder
analysis

Context
{superclass = Del iverable}

Inheritance Diagram

Deliverable
{abstract}

Context
DD Entry
{abstract}

ResponsePlan

Use Case
Model

Class Model
Test

Document

. . .

{ incomplete}

Review

System
Interaction

Model

Object
Interaction

Model

Operation
Model

Typical References between
Deliverables

Use Case
Model

System
Interaction

Model
Domain Model

Class Model
Operation

Model

State ModelClass

Test
Description

Context

Object
Interaction

Model

Note

Data Types

Al l Entr ies

{or}

Corresponds to the
Task in Microsoft

Project

Experience with the Process
(Fusion with Use Cases)

• 350 documents in the repository

• context 36%, note 15%,

• system interaction model 14%,

• use case model 10%,

• class model 6%, operation model 5%,

• class 5%, domain model 4%,

• object interaction model 3%,

Benefits of the Model based on
Deliverables as Objects

• It is easier to define set of deliverables
rather than set of activities

• Good support for incremental development
(context document is a single instance
throughout the life-cycle)

• Different processes can use the same
framework (flexible)

• Changes in deliverables do not affect the
framework (process is easy to maintain)

Conclusions

• Process model with deliverables as objects:
– Different processes can use the same

framework (flexible)

– Easy to maintain (changes in deliverables do
not affect the framework)

– Good support for management

– Robust and self-consistent (constructors and
quality methods)

Example of Design Deliverable
(Object Interaction Model)

Example of the Process:
Microsoft Solution Framework

Vis ion/Scope Approved

Project Plan Approved

Scope Complete/ F i rs t Use

Release

Vis ion/Scope
Risk

Assessment
Project

Structure

Funct ional
Specif icat ion

Risk
Assessment Master Plan Master Schedule

Vis ion Scope
Summary

Background
Information

Design and
Usabi l i ty Goals

Constraints,
Expectat ions

Usage Scenar io
Features and

Services

Component
Specif icat ions

Addit ional
Design

Documents

Development
Plan

Test Plan

User Educat ion
Strategy Plan

Logist ics Plan

Market ing Plan

Risk
Assessment

Performance
Solut ion Draft

Test
Specif icat ion

and Test Cases

Vers ioned
Funct ional

Specif icat ion

Updated
Schedule

<<updates>>

Executables Release Notes

Training
Materials

Test ing
Documents and

Tools

Faci l i ty and
Platform

Installation

Software /
Data Setup /
Convers ion

Problem
Statement

Vis ion
Statement

User Prof i le

Solut ion
<<updates>>

<<updates>>

<<updates>>

Versioned
Source

Example of the Process:
Fusion with Use Cases

Class Model
(Dependenc ies)

Use Case Mode l

Object Interact ion
Mode l

Class Model
(Associat ions)

C lass
(Contract

descr ipt ions)

Class Model
(Inher i tance)

C o d e

Sh ipped Code

A
N

A
L

Y
S

IS
D

E
S

IG
N

IM
P

L
E

M
E

N
T

A
T

IO
N

M i lestone - Requi rements

Mi lestone - Analysis

Mi lestone - Design

User
Documenta t ion

D
O

C
U

M
E

N
T

IN
G

Tes t Document
and Test Scr ipts

Mi lestone - Implementat ion

T
E

S
T

IN
G

Requ i rements
Suggest ion

Stakeholders

Domain Mode l
(subsystems)

Operat ion Model
(Input/output
operat ions)

Change Reques t

C
O

N
C

E
P

T
U

A
L

IZ
A

T
Task Context

(business funct ion
and requi rements)

Sys tem
Interact ion Model
(Use scenar ios)

Prototype

