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Good Development Process

• Easy to use

• Easy to maintain

• Good support for project management

• Flexible

• Robust and self-consistent



Workflow Model
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Object-Oriented Model 1:
Activities are Objects

• Used as OPEN process description

• Tasks are object operations

• Deliverables are operation postconditions

• [Henderson-Sellers, B.: OPEN Process
Specification, 1997;
http://www.csse.swin.edu.au/cotar/OPEN/
PROCESS/index.html]



Activities are Objects:
Potential Problems

• Difficult to determine appropriate set of
activities for the project
– depends on the project characteristics (size,…)

– requires detailed knowledge of the
methodology

• Activities are defined in the core method

• Not fail-safe



Object-Oriented Model 2:
Deliverables are Objects

• Methods:
– tasks (constructors)

– quality methods (consistency, completeness,…)

• Attributes (see next slide for details):
– content

– references to other deliverables

• No “activities” in the model



Object Attributes and Methods

Kind
N a m e
References to other  del iverables
Descript ion    / /UML diagram, text,  prototype, etc.
Project
Subsys tem
Context      / / reference to the context del iverable
File&directory      / / i f  del iverable is code, test, etc.
Respons ib le  deve loper
Audit  at tr ibutes

<<const ructor>>
Procedure how to create the del iverable

<<qual i ty cr i ter ia>>
Comple teness
Simple consis tency
Semant ic  cons is tency

Deliverable
{abstract}

Synops is
Requ i rements
Solut ion
Not  covered issues
Motivat ion (benef i ts)
Consequences (cos ts )
Target  group (s takeholders)
B reakdown
Metr ics ( t ime est imates)
C o m m e n t s

<<const ructor>>
1. Brainstorm, or  obtain suggest ions of
requ i rements
2. Ident i fy stakeholders
3. Modify context  document in the l ight  of
stakeholder analysis.

<<qual i ty cr i ter ia>>
Document is  complete in the l ight  of  s takeholder
analysis

Context
{superclass = Del iverable}



Inheritance Diagram
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Typical References between
Deliverables

Use Case
Model

System
Interaction

Model
Domain Model

Class Model
Operation

Model

State ModelClass

Test
Description

Context

Object
Interaction

Model

Note

Data Types

Al l  Entr ies

{or}

Corresponds to the
Task  in Microsoft

Project



Experience with the Process
(Fusion with Use Cases)

• 350 documents in the repository

• context 36%, note 15%,

• system interaction model 14%,

• use case model 10%,

• class model 6%, operation model 5%,

• class 5%, domain model 4%,

• object interaction model 3%,



Benefits of the Model based on
Deliverables as Objects

• It is easier to define set of deliverables
rather than set of activities

• Good support for incremental development
(context document is a single instance
throughout the life-cycle)

• Different processes can use the same
framework (flexible)

• Changes in deliverables do not affect the
framework (process is easy to maintain)



Conclusions

• Process model with deliverables as objects:
– Different processes can use the same

framework (flexible)

– Easy to maintain (changes in deliverables do
not affect the framework)

– Good support for management

– Robust and self-consistent (constructors and
quality methods)



Example of Design Deliverable
(Object Interaction Model)



Example of the Process:
Microsoft Solution Framework
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Scope Complete/  F i rs t  Use

Release

Vis ion/Scope
Risk

Assessment
Project

Structure

Funct ional
Specif icat ion

Risk
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Design and
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Development
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Test
Specif icat ion
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Updated
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<<updates>>

Executables Release Notes
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Materials
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Documents and

Tools
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Platform

Installation

Software /
Data Setup /
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Problem
Statement

Vis ion
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User Prof i le

Solut ion
<<updates>>

<<updates>>

<<updates>>

Versioned
Source



Example of the Process:
Fusion with Use Cases
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