An Object Model for Product
Based Development Process

Pavel Hruby
Navision Software a/s
ph@navision.dk

Good Development Process

Easy to use

Easy to maintain

Good support for project management
Flexible

Robust and self-consistent

Workflow Model

o Activity
e Task
 Deliverable

Object-Oriented Model 1:
Activities are Objects

Used as OPEN process description
Tasks are object operations
Deliverables are operation postconditions

Henderson-Sellers, B.: OPEN Process
Specification, 1997;
http://www.csse.swin.edu.au/cotar/OPEN/
PROCESS/index.html]

Activities are Objects:
Potential Problems

 Difficult to determine appropriate set of
activities for the project

— depends on the project characteristics (size,...)

— requires detailed knowledge of the
methodology

e Activities are defined in the core method
 Not fail-safe

Object-Oriented Model 2:
Deliverables are Objects

e Methods:

— tasks (constructors)
— guality methods (consistency, completeness,...)

 Attributes (see next slide for detalls):
— content
— references to other deliverables

 No “activities” in the model

Object Attributes and Methods

Deliverable
{abstract}

<<constructor>>
Procedure how to create the deliverable

<<quality criteria>>
Completeness
Simple consistency
Semantic consistency

Context
{superclass = Deliverable}

Kind
Name
References to other deliverables

Project
Subsystem
Context /Ireference to the context deliverable

Responsible developer
Audit attributes

<<constructor>>

1. Brainstorm, or obtain suggestions of
requirements

2. |dentify stakeholders

3. Modify context document in the light of
stakeholder analysis.

<<quality criteria>>
Document is complete in the light of stakeholder
analysis

Description //UML diagram, text, prototype, etc.

File&directory //if deliverable is code, test, etc.

Synopsis

Requirements

Solution

Not covered issues
Motivation (benefits)
Consequences (costs)
Target group (stakeholders)
Breakdown

Metrics (time estimates)
Comments

Inheritance Diagram

Deliverable
{abstract}
A
| | | |
Plan Context DD Entry Response Review
{abstract}
N
Use Case SVSteT“ ObJeC.t
Model Interaction Interaction
Model Model
Operation Test
Class Model Fl)\/lodel Document

{incomplete}

Typical References between
Deliverables

Context L Corresponds to the
Task in Microsoft
Q Project
Use Case
Model
System
Desz:aisiion E— Interaction Domain Model
P Model
All Entries Q Q
Note J Operation Class Model
Model
{or}
P {
Object §
Data Types Interaction K&>—— Class —— State Model
Model i

Experience with the Process
(Fusion with Use Cases)

350 documents in the repository
context 36%, note 15%,

system interaction model 14%,

use case model 109%,

class model 6%, operation model 5%,
class 5%, domain model 4%,

object interaction model 3%,

Benefits of the Model based on
Deliverables as Objects

e |t Is easier to define set of deliverables
rather than set of activities

e Good support for incremental development
(context document is a single instance
throughout the life-cycle)

e Different processes can use the same
framework (flexible)

 Changes in deliverables do not affect the
framework (process Is easy to maintain)

Conclusions

* Process model with deliverables as objects:

— Different processes can use the same
framework (flexible)

— Easy to maintain (changes in deliverables do
not affect the framework)

— Good support for management

— Robust and self-consistent (constructors and
guality methods)

Example of Design Deliverable
(Object Interaction Model)

i, Send Mail [Dbject Interaction Model] - Lotus Notes

File Edit VWiew Create Actions indow

Kind: Name:
Object Interaction Model Send Mail

Description:
Send kail

Higher Level El : Nawigate to I

Send Mail (System Interaction Model)
Send mail (Dperation Maodel)
MAIL Visibility Class Model (Class Model)

Detailed Description {(Diagram):

Send() 1 SessionlDi)
Ml Chisil 2 [if SessioniD<-0]StartSessiong 7| M-C3ession
3. MAPISEnchail) 2.1, MAPILogon()
woutility=> 3. "Ml <cactors>
Mapl Mail receiver

Lower Level El : Mavigate to...

MI_Chdail (Class)
MI_CSession (Class)

Project: 52
Subsystem: tl
Task: 18. Mail Integration, 39. Simple Mail Integration

File (Directory):\SzyM|

Created : 21-01-97 1353 Created by: Jim Hansen
Modified: 03-03-9711:53 Modified by: JimHansen

| A i =2fotfee e

Example of the Process:
Microsoft Solution Framework

Vision/Scope Approved

Vision/Scope Risk

Project
Assessment

Structure

Problem

Statement User Profile

<<updates>>
Vision
Statement Solution

Project Plan Approved

<<updates>> Functional Risk

Specification Assessment Master Plan Master Schedule

Design and

Vision Scope Background Usability Goals Development Test Plan
Summary Information Constraints, Plan
Expectations
[1 1

Additional
Design
Documents

Features and

User Education
Services

Strategy Plan

Usage Scenario Marketing Plan

<<updates>>

Component

Specifications Logistics Plan

<<updates>>

Scope Complete/ First Use]

Versioned

Performance Risk Test Updated
faactional Solution Draft Assessment Specification Schedule
Specification and Test Cases
Release 1
Testing Facility and Software /
Executables Release Notes Documents and Platform Data Setup /
Tools Installation Conversion
Versioned Training

Source Materials

Example of the Process:
Fusion with Use Cases

<
N
3 Requirements
< Suggestion Stakeholders
2
F i
o |
I ;
Q Task Context
z (business function
0 and requirements) Change Request [<z--------;
(@) !
Milestone - Requirements
| Use Case Model 1
P v v/
- System .
< Interaction Model Domain Model Prototype
> h (subsystems)
A B e (Use scenarios)
<]]]
z i i !
< 1 | i
Operation Model
(Input/output Class Model
operations) (Dependencies)
h y ; Milestone - Analysis
Object Interaction Class Model
= Model (Associations)
o 1 1 1 1
o oo D
w | :
al | y VAR
i (Ccolnat?;ct Class Model
! descriptions) (Inheritance)
: Milestone - Design
A
0o
- 2
< |: Test Document
= z o and Test Scripts Code
Z 5z
w =
=
1 0F AV
o O U
Ia) ser .
% Documentation Shipped Code

Milestone - Implementation

