
The Object Model for a Product Based Development
Process

Pavel Hruby
Navision Software A/S, Frydenlunds Allé 6, 2950 Vedbaek, Denmark

E-mail: ph@navision.com, homepage: www.navision.com

Abstract

The traditional workflow process model is typically illustrated with a graph of
activities, tasks, deliverables and techniques. From an object-oriented perspective,
every identifiable concept can be depicted with an object, and from this same
perspective, evolution can be demonstrated with object interactions. There are at
least two ways to describe the software development process using an object-oriented
model. The first, an activity-based approach, uses activities as objects, tasks as object
operations and deliverables as operation postconditions. The second, a deliverable-
based approach, uses deliverables as objects, tasks as object operations and activities
as object states. Techniques are considered the implementation of operations in both
cases. The article will:
a) compare activity-based and deliverable-based object models of development

processes and
b) describe our experience with a deliverable-based object model that we used for

about one year when we developed an application used for financial management.

The Workflow Model

This section defines the terminology used throughout this article. Tasks (in this
article) are small behavioral units that usually result in a deliverable. Some examples
of tasks are: construction of a use case model, construction of a class model and
writing of code. Techniques are formulas for performing tasks, for example,
functional decomposition, using CRC cards, and programming in Smalltalk.
Deliverables are final or intermediate products resulting from software development,
for example, a use case model, a class model, or source code. Activities (in this
report) are units that are larger than task units. Activities typically include several
tasks and deliverables. Some examples of activities are requirements analysis, logical
design and implementation.

Deliverable 1

Deliverable 2

Task 1

Deliverable 3

Task 2

Task 3

Deliverable 4

Activity 1 Activity 2

Fig. 1. Workflow model of a development process.

The Object-Oriented Model – with Activities as Objects

In an activity-based approach, the activities are modeled as objects, and tasks are
modeled as their object operations. Project deliverables are postconditions of object
operations. A good example of the activity-based approach is the OPEN Project
Specification [2]. In this model, we see the following potential problems:
1. When setting up a new project, it can be difficult to determine the appropriate set

of tasks leading to the delivery of the completed product. First of all, it would
require a detailed knowledge of the entire method, and secondly, such a set of
tasks would strongly depend on various project characteristics, for example, the
project size.

2. Because the list of activities and tasks is determined by the method, using
modified activities or tasks requires a modification of the process model.

3. The model is not fail-safe. If an activity or task is omitted in the project plan, there
is typically no warning that something is missing.

The Object-Oriented Model – with Deliverables as Objects

In a deliverable-based approach, the deliverables are modeled as objects. These
objects are instances of deliverable classes that determine behavior, attributes,
semantics and relationships.

Deliverables have two kinds of methods. They have one or more constructors,
which are one or more tasks used to create the deliverable, and quality-assurance
methods which are, for example, completeness and consistency checks.

Deliverables have numerous attributes: name, kind, description, references to
other deliverables, project, subsystem, increment identification, responsible developer
and other attributes such as who created and modified the deliverable and when.

The attributes kind and name taken together are the key that uniquely identifies
the deliverable in the data dictionary. The attribute description typically contains a
UML diagram, a table or a text. The choice of a suitable representation is left up to
the judgement of the developer and depends on the specific situation.

Each design increment is described by a single deliverable referred to as
“Increment Context”, that corresponds to “Task” in Microsoft Project used for project
planning. “Increment Context” deliverables exists throughout the entire life cycle of
the increment (from requirement analysis to implementation and testing. This is an
important factor that makes management of incremental development easier.

Note that design deliverables may relate to more than one increment context
documents. For example, different developers may work with the same class model in
the scope of different increments, or more typically, class model can be reused within
different increments.

Deliverable
{abstract}

Increment
Context

DD Entry
{abstract}

ResponsePlan

Use Case
Model

Class Model
Test

Document

{ incomplete}

Review

Component
Interaction

Model

Object
Interaction

Model

Operation
Model

. . .

Fig. 2. Inheritance diagram showing the classes of deliverables used in the development
process. The incompleteness of the inheritance tree allows for flexibility throughout the
process and for the exact matching of project deliverables to different kinds of processes. The
class DD Entry has abstract constructor and abstract quality criteria defined in derived classes.

Experience with the Deliverable-Based Process Model

We have used the described process model in several projects since the summer of
1996. Using the object model above, we have developed a process [4], based on the
Fusion method [1], extended of the use cases and requirements analysis and made
minor modifications to match the UML notation and incremental development. We
used Lotus Notes as a repository for project deliverables as well as the data
dictionary.

The main benefit of using these tools was flexibility – in notation, in the kinds of
deliverables in the repository and in the possibilities provided for modifying the
process according to the size and character of the increment.

Increment
Context

Use Case
Model

Component
Model

Operation
Model

**

Component
Interaction

Model

Class Model

Object
Interaction

Model

Class

State Model

**

** **

**

*
*

*
*

*
*

*

*

*

*

Note

*

Data TypesPrototype

*

*

Test
Document

*

*

Fig. 3. Structure of typical references between analysis and design deliverables. In principle a
deliverable can have bidirectional link to any other document or documents, to enable maximal
flexibility.

After half a year, we had about 350 documents in the repository with the
following distribution: increment context, 36%; note, 15%; use case model, 10%;
component interaction model, 14%; component model, 4%; operation model, 5%;
object interaction model, 3%; class model, 6%; class, 5%; state model, 1% and data
types, 1%. The relatively large number of increment context documents can be
explained by the fact that some minor increments were sufficiently defined by their
increment context documents together with note documents and did not need to
aggregate a full set of analysis and design deliverables.

Benefits of a Deliverable-Based Object Model as Compared to an
Activity Based Object Model.

1. It is easier to define a set of deliverables than a set of activities. In a small project,
it is often sufficient to produce only context, plan, source code and user
documentation. As the project grows, the number of kinds of deliverables
increases and always reflects project state and possible specific demands.

2. The model is flexible. The final product is not always a code. It could be another
process, such as testing or version-control process. The deliverable-based object
model can be easily adopted for different kinds of projects, just by defining the
methods and attributes of the deliverable classes.

3. The model provides good management support for incremental development. The
increment is described by a single document that remains throughout the
increment’s life cycle.

4. The model is robust and consistent. In an activity-based object model, an activity
might be omitted during project planning, but in a deliverable-based model, the
deliverable that is necessary for the development cannot be omitted because of the
constructor and quality methods of related deliverables.

Conclusions

We have described a deliverable-based object-oriented model for the description of a
software development process. Its main artifacts are deliverables, modeled as objects
with constructor and quality-assurance methods and with a number of specific
attributes. We have described our experience with the model and identified it as more
flexible, easier to use in general, and more robust than an activity-based model.

References

[1] Coleman, D. et al.: Object-Oriented Development: the Fusion method, Prentice
Hall 1994
[2] Henderson-Sellers, B., Graham, I., Younessi, H.: The OPEN Process
Specification, Swinburne University 1997
[3] Hruby, P.: The Object-Oriented Model for a Development Process, OOPSLA’97
[4] Hruby, P.: The Fusion Process from an Object-Oriented Perspective. Submitted to
the Fusion Newsletter.

