

CAPITALISM IN UNIFIED
MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED
APPLICATIONS THAT UNDERSTAND
YOUR BUSINESS

Pavel Hruby

CSC

CSC Papers

2008

ABSTRACT
Have you ever tried to analyze large amounts of data in your enterprise resource
planning system, and found it difficult to trace causes and effects of certain
transactions or reported data, or found it too cumbersome, or even impossible to
customize the application to exactly fit the changing needs of your organization?

This is because all current financial applications are based on the principles
established at the end of the 15th century; which are suitable for a different
environment than we live in today, and which are unable to use the full potential
of information technologies. Consequently, none of the current enterprise
resource planning systems offers full traceability of business data, each only has
fragments of generic business semantics embedded, and therefore, applications
have only limited interoperability with other enterprise information systems. As a
consequence, to a large extent, extracting actionable meaning from business
data is left to the end user.

A solution to these problems is offered by the REA (Resources, Events, Agents)
modeling framework and ontology for business systems. The REA model
captures the cause-and-effect relationships between business transactions, and
consequently the applications based on the REA principles provide for full
traceability of data that influence values of economic resources. This paper
explains basic REA principles, and also discusses how to use service-oriented
architecture (SOA) to extend the REA model to provide functionality required in
specific business areas, and the scalability and customizability of the software
applications.

Mastery of REA architectural principles will allow a firm to strengthen its leading
position in the development of business solutions. Its customers will benefit from
the availability of inexpensive applications with embedded generic business
semantics.

1

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

Table of Contents

1 Introduction ... 2
2 The State of the Art .. 3

2.1 The End of Users .. 3
2.2 Double-Entry Bookkeeping Does Not Meet Demands for Modern Information
Architectures .. 5
2.3 Model-Driven Design .. 7
2.4 Evolution of Large Systems ... 8

3 What Is the REA Model? .. 10
3.1 Concepts .. 10
3.2 Joe’s Pizzeria.. 12

3.2.1 Sales Process...13
3.2.2 Purchase Process ...15
3.2.3 Labor Acquisition Process ..16
3.2.4 Summary ..16

3.3 REA Exchange Process Pattern .. 17
3.4 How Joe’s Pizzeria Obtains Pizza ... 20

3.4.1 Producing Pizza...20
3.4.2 Summary ..22

3.5 REA Conversion Process Pattern .. 23
4 Describing Events That Could or Should Happen... 25

4.1 REA Commitment Pattern ... 26
4.2 REA Contract Pattern .. 30
4.3 REA Schedule Pattern ... 35

5 Capitalism for Software Engineers ... 38
6 Extending the REA Model Using Services .. 39

6.1 Behavior May Not Be Localizable Into REA Entities.. 39
6.1.1 Aspect-Oriented Programming ..40
6.1.2 Service-Oriented Approach...40
6.1.3 There Is No Complete List of Service Patterns..41

6.2 Identification Service Pattern.. 42
6.3 Location Service Pattern .. 46
6.4 Notification Service Pattern.. 51
6.5 Inventor’s Paradox Pattern ... 54

7 Why Do We Not Have REA Applications Yet? ... 57
7.1 The REA Model Might be a Disruptive Innovation ... 58
7.2 CSC Catalyst and the REA Model .. 59
7.3 The REA Model in National and International Standards................................... 61
7.4 REA Community .. 61
7.5 Books on the REA Model .. 61

Acknowledgements .. 62
References... 63

2

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

1 INTRODUCTION
This paper describes the REA (resources, events, agents) model, which specifies
the fundamental laws of the business domain. Knowing these laws radically
enhances the application designers’ potential to develop business solutions without
omissions, and ensures consistency of software applications from the business
perspective:

 Software applications based on the REA model contain more business
knowledge than applications developed merely from user requirements, and can
therefore advise and guide the users during development and configuration,
without restricting the end-users at runtime.

 The application design based on the REA model is concise and easy to
understand both for the users of software applications, for consultants, and for
application developers. The REA model describes a ubiquitous language
ensuring unambiguous communication and understanding among all participants
of the software development process.

 The same modeling principles are used across all application areas in the
business domain; the sales, procurement, production, marketing, human
resources, finance, and other areas are described by a common set of patterns.

 As REA software applications store the primary data about economic resources,
all reports and all accounting artifacts are always consistent, because they are
derived from the same data; for example, the data describing the sale event is
used in the warehouse management, payroll, distribution, finance and other
application areas, without transformations or adjustments.

 The REA model provides for more complete, transparent, and up-to-date
reporting for business decision makers than reporting based on the accounting
artifacts, which dominates in current business applications.

The REA model was originally proposed as a generalized accounting model for use
in a shared data environment. It was first published by William E. McCarthy of
Michigan State University (McCarthy 1982). Since then, the original REA model,
based on the fundamental categories of economic event, economic agent and
economic resource, has been extended by McCarthy and Guido Geerts to an
ontology for business systems (Geerts, McCarthy 2000a, 2002), and includes
additional categories such as commitments and contracts. The REA model
became the foundation for several electronic business interchange standards, such
as ebXML1, and UN/CEFACT2, and Open-edi (ISO/IEC 15944-4). The REA model
has established a solid reputation among business analysts and teachers of
enterprise information systems as a conceptual framework for modeling business
systems and as a business analysis tool. This reputation is largely based on the
ontology’s ability to explain why economic transactions occur; that is to reveal the
cause-and-effect relationships between economic transactions. This unique feature
distinguishes the REA model from alternative business ontologies such as e 3value

1 Electronic business eXtensible markup language, http://ebxml.org/
2 United Nations Centre for Trade Facilitation and Electronic Business,
http://www.unece.org/cefact/

3

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

(Gordijn 2002) and eBMO (Osterwalder 2004), as well from alternative business
process modeling methods such as BPML.

This paper is structured as follows. In the first part, state-of-the-art, outlines
common problems that we experience today when developing and using business
software applications, and how these problems can be solved using the REA
model. The second part, What Is the REA model, describes REA concepts, domain
rules assuring that the application model is sound from the business perspective
and illustrates, using an example called Joe’s Pizzeria, how to apply the REA
model to form the backbone of the application model

Knowing the REA model is useful but not sufficient to build a business application;
similarly, knowing only Maxwell’s laws is not sufficient to build a radio transmitter
and receiver. Therefore, the REA model can (and should) be extended using a
number of patterns that comprise functionality necessary to build business
applications that meet specific business needs. We describe the patterns that
extend REA in the section Extending the REA model with Services. The last part,
Why We Do not Have REA Software, Yet, gives references and tips to a reader
who would like to know more.

2 THE STATE OF THE ART
This section outlines several common problems that we experience today with
enterprise resource planning systems, and how the REA model can contribute to
solving these problems.

2.1 THE END OF USERS
The expression “the end of users” has been used by Mary Beth Rosson’s keynote
at OOPSLA 20053. She observed that many end users would like to customize their
business applications themselves, without needing a specialist (and therefore
become occasional “developers”). The success of Microsoft Excel as a business
application can be partially explained by its empowering of users to model business
processes themselves.

The following is a traditional scenario for implementing a new enterprise business
solution in a corporation:

1. A consultant works with users to describe the corporate business processes to
be supported by a software solution.

2. A team of developers receives the consultant's description, but the developers
have trouble understanding the business terminology and find the description too
informal to use for implementing the system.

3. The developers write their own system specification from a technical point of
view.

4. When the system specification is presented to the users, they do not quite
understand it because it is too technical. They are, however, forced to accept it
as a contract for system development.

3 http://www.oopsla.org/2005/ShowEvent.do?id=407

4

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

Fig. 1. Users’ needs are not suitable as a system specification. On the other hand,
developer’s system specification is not fully understood by users.

This approach can easily result in a system that does not meet user requirements
because often the users, the consultants and the developers don't speak the same
language. Such communication problems can make it difficult to turn a description
of business processes into a technical software specification that all parties can
understand. In addition, because a technical system specification that is not fully
understood by the actual users of the system is used, business applications
become difficult to use.

When the solution is delivered and runs, users lack information about actual
efficiency of the implemented business processes because the indicators or
statistics are closely related to the software solution, and their business
interpretation might be confusing. Improving business processes is difficult because
they are defined by means of a system specification that is not understood by
actual users of the system.

Benefits of Using the REA Model

As a means of solving this problem of understanding, REA concepts can be used
as a ubiquitous language4 that consultants, developers and end users alike use to
define, analyze and improve the business processes. The team will design and
specify the system in a single creative procedure that will approach things from the
user's point of view and use language that is identical to the language of the user's
daily work.

4 The need for ubiquitous language in software design has been described in (Evans 2005).
This book also showed that a design becomes much better if it is expressed in users’ terms,
not in technical terms.

5

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

Users

Business Processes
Cross-Company Extensions

REA Models

Developers

User

Labor

Cash

Enterprise’s
Processes «exchange process»

Sales

«conversion process»
Making Pizza

«exchange process»
Purchase«exchange process»

Labor Acquisition

Pizza

Cash

Raw Materials

Developer

«increment»
Pizza

Production

«resource»
Cash

«decrement
event»
Salary

Payment

«increment
event»
Labor

Acquisition«resource»
Labor

«economic
agent»

Enterprise

«economic
agent»

Employee

«outflow»«inflow»

«provide»

«receive»

«provide»

«receive»

«increment
event»

Acquisition of
Intelectual
Property

«exchange»

«resource»
Intellectual
Property

«inflow»
«receive»

«provide»

«resource»
Raw

Material

«decrement»
Material

Issue
«increment»

Pizza
Production

«resource»
Pizza

«produce»
«decrement»

Labor
Consumption

«resource»
Labor

«decrement»
Oven Use

«conversion»
«resource»

Oven

«consume»

«consume»

«use»

Consultant

Fig. 2. REA models are intuitive for the user and are based on his perspective and
terminology. In addition, they have precise semantics so the models are executable.

The REA model describes the company’s business processes in a natural way for
the users and therefore increases efficiency and productivity of the parties involved
in system design, including the creation and customization of business processes
by users and software non-specialists. The model offers an advanced authoring
environment, where content is tagged with semantic metadata. For example, the
environment will map entities of the customer’s world like Shipment and Payment to
the REA ontological category Economic Event.

The value chain model, specified in the REA modeling framework, can be used as
a catalogue of common business processes. The catalogue reduces and perhaps
even eliminates the work of implementing a system that has been specified in the
catalogue. Users themselves, without intervention of a consultant or developer, are
able to customize their business processes using the interactive modeling
environment, and support distributed business processes. The applications will be
able to integrate with company-wide or cross-company business processes by
means of the REA business ontology.

2.2 DOUBLE-ENTRY BOOKKEEPING DOES NOT MEET DEMANDS FOR
MODERN INFORMATION ARCHITECTURES
Double-entry bookkeeping is the standard system used by business organizations
to record financial transactions. The results of an organization’s business
operations are represented by accounts, each of which reflects a particular aspect
of the business as a monetary value. This method is called double-entry because
each transaction is entered twice. Each debit value must have a corresponding
credit value, and all transactions must "balance" so that when you add up all the
debit balances, the total must be the same as the total of all the credit balances.
Double-entry bookkeeping is a method originating from the end of the 15th century,
when the number of transactions was relatively low, the transactions were

6

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

processed using tools such as pen and paper, and negative numbers had not yet
been discovered.

Despite its historical success, this method has its limits. The value of transactions,
and their balance, is the main method of establishing traceability between them.
This is only indicative and provides a partial level of traceability. This was a feasible
way when using tools such as pen and paper, but this method does not exploit all
possibilities offered by modern data processing technologies.

Along with increased enterprise sizes, enterprise information systems are becoming
more complex, and it is more and more difficult to process the relevant data for
enterprise management using the 15th century method. Unfortunately, it also opens
up an increasing number of ways to manipulate data. The Enron case in the USA
showed the scale such data manipulation can reach.

We see a demand for an enterprise resource planning system that would be
designed from scratch for use with information technologies. This system would
enable full traceability of all, not just some, activities that influence the value of the
enterprise’s resources. The value of the enterprise’s resources could be calculated
on demand and be available whenever required, not only once a year, a month or
two after closing the financial books.

Benefits of Using the REA Model

It is clear that computer systems are able to provide a much greater level of
traceability between transactions than only by comparing whether their monetary
values are equal. Relational databases, for example, can represent transactions as
records and trace transactions by means of the relationships between them.

The REA ontology establishes the theoretical foundation for full traceability in
enterprise resource planning systems by defining the fundamental relationships that
may exist between transactions. Moreover, it also defines fundamental entities,
some of which are not present in double-entry bookkeeping, such as agreements
and contracts. People who are not experts in accounting are often surprised by the
fact that the monetary value of a company’s orders and other contracts, a very
important indicator for business decision makers, is not represented in the chart of
accounts, the central document of double-entry bookkeeping.

An REA-based application may create the same set of accounts as the double-
entry system and provide the same required functionality, so the legal requirements
for accounting software can easily be met5. In addition, an REA-based application
offers a consistent and complete data model from which business reports (not only
financial reports) can be created. As the REA application has embedded business
semantics, the application can provide relevant data needed for every decision
maker in any given situation, and will consequently support context-aware or
personalized distribution and presentation of business data.

5 Thanks to full traceability of all transactions that influence the value of economic resources,
REA software naturally support demands set by the Sarbanes-Oxley Act. In addition, full
traceability is achieved for all transactions, not only financial transactions.

7

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

2.3 MODEL-DRIVEN DESIGN
Model-Driven design is an approach to developing software applications by
modeling the solution instead of writing code.

The state-of-the art tools for model-driven design can deliver that goal only partially.
Most tools cannot produce fully functional executable code (unless the model is
overly complex); they often generate a code skeleton, which might include
executable actions but is to be supplemented by hand-written code. Debugging
almost always occurs at the code level and not at the model level.

One of the reasons for this is that generic modeling languages such as UML,
BPMN, IDEF0, BPEL and YAWL do not contain enough domain-specific semantics.
Generic modeling languages have many advantages (such as a very large scope),
but a key drawback from the perspective of model-driven design is that they are not
specific enough to be compiled into executable software without additional hand-
written code, unless the model is overly complex and hard to understand by non-
technical users.

Current trends show that the objective of automatically creating a software
application only by modeling can be achieved if the modeling language is not
generic but domain-specific. As the domain-specific language has embedded
domain semantics, this makes the model much simpler, and a tool can be used to
validate the model. Examples of successful domain-specific modeling tools are
MATLAB and SIMULINK, in the domain of linear dynamic systems.

Alternative business process ontologies, currently being developed at many
research institutions (such as e3value and eBMO ontologies), attempt to address
the problem of specificity. These ontologies can successfully model what, when,
where and sometimes how, but they do not capture the cause-and-effect
relationships between business transactions.

The REA model is the only known business modeling method that can
provide the answers to why business processes occur, reveal the
cause-and-effect relationships between economic transactions, and
provide for full traceability of all transactions that influence the values of
economic resources.

An example is: “Why do I need to pay this shop?” The answer, which an REA-
based application can provide, is: “Because you received the goods.” This answer
cannot be given by any alternative business modeling method or ontology. None of
the approaches, such as Use Case model, Data model, IDEF0, BPMN, BPEL,
YAWL, e3value, eBMO, or any other state-of-the-art business modeling
approaches, can answer the question of why an enterprise performs its business
processes, and why a specific modeling element is part of the model, because the
business interpretation of the modeling elements, and business validation of the
model, are not available to a tool and are left solely to the modeler.

Benefits of Using the REA Model

Compared to generic modeling languages that use general-purpose concepts such
as activities, tasks, data entities and objects to express business processes, the
REA model uses five specific concepts to create a model:

8

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

 economic resource

 economic agent

 economic event

 commitment

 contract

These concepts, together with their relationships, are described in detail in the
section “What Is the REA Model?”

REA models are fully executable. The fact that REA modeling elements are more
specific than elements such as activity or data entity radically (and surprisingly)
increases the amount of information in the model, while preserving its simplicity.
The amount of information in the model is so high that the model can be compiled
into executable code – that is, an enterprise resource planning application – without
needing any additional information or modifications from a software developer (this
has been proved by a project run by Navision from 1999-2003).

The REA ontology contains rules for formulating well-formed models of enterprise
processes that a tool can use to make a syntactic check of the model based on
business semantic rules. For example, all well-formed REA models obey a
fundamental rule that every increase of a resource value for an economic agent is
always paired with some decrease of the value of some of its resources; that is,
there is no increase in the resource value for free. The relationship between
increment and decrement event represents the causality between economic events
(business transactions), and enables a tool to deduce why economic events occur
or should occur.

Another example of a rule for validating consistency of the model from an economic
perspective is that for every economic resource there must exist at least one
economic event explaining how the economic agent disposed of or consumed this
resource. Likewise, for every economic event that increases the value of an agent’s
resources, there must exist an economic event that decreases the value of the
agent’s resources, and for every economic event there must be two economic
agents: the recipient and the provider of the economic resource specified by the
event.

2.4 EVOLUTION OF LARGE SYSTEMS
Enterprise resource planning systems are evolving over time because the business
processes they support are changing. This applies to product lines as well as
individual installations. One of the challenges affecting systems that must evolve
over time is to determine the stable core, comprising the fundamental principles of
the user’s business and the parts of the system that might change, for example,
together with changing technologies.

None of the state-of-the art enterprise resource planning systems makes that
distinction sufficiently clearly. The consequence is that as the system evolves, it
becomes increasingly difficult to manage the dependencies between different
features and added functionality. For example, it is known that in the case of

9

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

Microsoft Dynamics NAV, one of the successful enterprise resource planning
systems for the mid-range market, customers can decide between a customized
solution but not being able to upgrade to future versions, or being able to upgrade
but having the application only with generic logic. A heavily customized Microsoft
Dynamics NAV solution is very expensive to upgrade.

There are several approaches attempting to structure the business systems by
describing the fundamental modeling entities, such as archetypes (Coad,
Lefebvre, DeLuca. 1999) and pleomorphs (Arlow, Neustadt 2003), for the
business domain, and many business patterns on more detailed levels; my
favorite books include (Fowler 1996), (Hay 1996), (Silverstone 1997), (Marshall
2000) and (Evans 2003). The patterns and modeling entities described in these
books can be expressed in terms of the REA concepts. These patterns are more
specific, as they focus on certain subdomains within the business domain. They are
excellent generalizations of many existing software solutions, but they all miss the
fundamental skeleton (such as that their primary purpose is to support planning,
monitoring and controlling exchanges of economic resources between trading
partners).

Benefits of Using the REA Model

The REA model specifies the criteria distinguishing the stable and the evolvable
parts of the system expressed in users’ business terms. REA concepts determine
the stable core of the system, defining the very fundamental principles of an
enterprise’s business and its purpose, which is often independent of the supporting
technologies. This stable core can be extended by services that are designed to be
inexpensive to change in time to reflect changing company business needs. This is
schematically illustrated in Fig. 3.

«agent»
Customer

«event»
Sales

«event»
Payment Receipt

«resource»
Item

«resource»
Cash

«receive»

«provide»

«exchange»

«stockflow»

«stockflow»

«identification»
Item Number

«agent»
Customer

«event»
Sales

«event»
Payment Receipt

«resource»
Item

«resource»
Cash

«receive»

«exchange»

«stockflow»

«stockflow»

E-mail address E-mail Message

«provide»

«address»
Address

«address»
Notification

Item Number
«account»
Balance

«account»
Addition

«account»
Subtraction

Balance Addition

Subtraction

Services
(Extending Ontologies)
Specific Requirements

REA
(Business Domain Ontology, Stable Core)

Check Nr.

«identification»
Check Nr.

Software Application
(Executable Model)

Fig. 3. The REA ontology can be extended by other ontologies to reflect specific and changing requirements.

10

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

Such an approach has been practically proved by a project at Navision from 1999-
2003 that had very positive results; the product has been shipped in a beta version
(the project was stopped in 2003 after the acquisition of Navision by Microsoft.)

3 WHAT IS THE REA MODEL?
The REA model is an ontology and modeling framework that specifies classification
of the concepts in a business domain, derived from the fundamental idea that
business is based on exchanges of economic resources between trading partners.
In this paper I describe REA concepts informally, and illustrate them on Joe’s
Pizzeria example.

3.1 CONCEPTS
There are several concepts that are present in almost all business software
applications. Understanding these concepts makes it much easier to design
business applications, to ensure that they do not violate the domain rules, and to
adapt the applications to changing requirements without the need to change the
overall architecture.

These concepts are known as the REA model (Resources, Events, Agents). Fig. 4
illustrates the most fundamental REA concepts, which are economic resource,
economic agent, economic event, commitment, and contract.

stockflow
provide

receive
increment decrement

duality

fulfillment

reservation

reciprocity

receive

provide

party

clause

linkage responsiblity

Fig. 4. Fundamental REA concepts

Economic Resource is a thing that is scarce, and has utility for economic agents,
and is something users of business applications want to plan, monitor, and control.
Examples of economic resources are products and services, money, raw materials,
labor, tools, and services the enterprise uses.

Economic Agent is an individual or organization capable of having control over
economic resources, and transferring or receiving the control to or from other
individuals or organizations. Examples of economic agents are customers, vendors,
employees, and enterprises. The enterprise is an economic agent from whose
perspective we create the REA model.

11

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

Economic Event represents either an increment or a decrement in the value of
economic resources that are under the control of the enterprise. Some economic
events occur instantaneously, such as sales of goods; some occur over time, such
as rentals, labor acquisition, and provision and use of services.

Commitment is a promise or obligation of economic agents to perform an
economic event in the future. For example, line items on a sales order represent
commitments to sell goods.

Contract is a collection of increment and decrement commitments and terms.
Under the conditions specified by the terms, a contract can create additional
commitments. Thus, the contract can specify what should happen if the
commitments are not fulfilled. For example, a sales order is a contract containing
commitments to sell goods and to receive payments. The terms of the sales order
contract can specify penalties (additional commitments) if the goods or payments
have not been received as promised.

The fundamental idea of the REA model is

If an enterprise wants to increase the total value of resources under
its control, it usually has to decrease the value of some of its
resources.

An enterprise can increase or decrease the value of its resources either by
exchanges or by conversions.

 Exchange is a process in which an enterprise receives economic resources
from other economic agents, and it gives resources to other economic agents in
return.

 Conversion is a process in which an enterprise uses or consumes resources in
order to produce new or modify existing resources.

The data associated with exchanges and conversions are the primary business
data about the enterprise in REA software applications. Accounting artifacts such
as debit, credit, journals, ledgers, receivables, and account balances are derived
from the data describing the exchanges and conversions. For example, the quantity
on hand for an inventory item can be calculated from the difference between the
purchase and sale events, or between the production and consumption events, for
that inventory item.

For comparison, in most current business software applications, whose paradigms
are derived from double entry accounting, it is the opposite – they focus on the
accounting artifacts, and economic data is derived from them. This, in some sense,
puts the consequences before the cause and makes the models more complicated.

The fact that the REA applications operate on primary and raw economic data
explains why they offers a wider, more precise, and more up-to-date range of
reports than double-entry accounting applications that operate on derived
accounting data.

12

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

3.2 JOE’S PIZZERIA

We will create an REA model for Joe’s Pizzeria

Joe makes revenue by selling pizza to his customers. Joe’s Pizzeria has
employees whose task is to sell pizzas, as well as to produce pizzas from raw
materials such as dough, tomatoes, cheese, pepperoni and other toppings. There
are also other things necessary to produce pizza, such as the oven where the pizza
is baked, electricity consumed to heat the oven, various kitchen equipment and
many other things. Joe is interested in tracking information about some of them; in
the REA model the things that Joe is interested in planning, monitoring and
controlling are called economic resources. Joe has decided that the economic
resources that will be included in the business software application are the Pizza,
Cash, Labor of the employees, and Raw Materials and Ingredients for producing
pizza.

Fig. 5. Trading partners of Joe’s Pizzeria

Trading partners of Joe’s Pizzeria are customers, vendors and employees. They
are capable of controlling economic resources; therefore, in the REA application
model the Customer, Vendor, Employee, and Joe’s Pizzeria are economic agents;
see Fig. 6.

The main business processes of Joe’s Pizzeria (see Fig. 6) are selling pizza to the
customers (the Sales process), purchasing raw materials from the vendors (the
Purchase process), and purchasing labor from the employees (the Labor
Acquisition process). We will construct the REA model for each process.

13

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

Fig. 6. Business processes of Joe’s Pizzeria

3.2.1 SALES PROCESS

The process of selling pizza to the customers is essentially an exchange of pizza
for cash; Joe’s Pizzeria gives Pizza to the customer, and receives Cash in return.
For Joe’s Pizzeria, the Sales process represents an outflow of Pizza and an inflow
of Cash; see Fig. 7.

Fig. 7. Selling pizza is an exchange of pizza for cash

The REA model for the process of selling pizza is illustrated in Fig. 8. Joe’s Pizzeria
and the Customer are economic agents, and the Pizza and Cash are economic
resources. One economic event is the transfer of ownership of the Pizza from Joe’s
Pizzeria to the Customer (we call this event Sale); in this transaction Joe’s Pizzeria
provides Pizza, and Customer receives it. Another economic event is the transfer of
ownership of Cash from the Customer to Joe’s Pizzeria (we call it Cash Receipt); in
this transaction the Customer provides Cash, and Joe’s Pizzeria receives it.

For Joe’s Pizzeria, the Sale event (the transfer of ownership of the Pizza to the
Customer) is a decrement event, because it decreases the value of the resources
under the control of Joe’s Pizzeria. The Cash Receipt is an increment event,
because it increases the value of the resources under the control of Joe’s Pizzeria.
The terms decrement and increment are relative to the model viewpoint; they
depend on the economic agent which is in the focus of the model. If we modeled
the same process from the perspective of the Customer, the transfer of pizza would
be an increment (would be called Purchase) and the transfer of cash would be a
decrement event (would be called Payment or Cash Disbursement).

The REA model of the sales process in Fig. 8 focuses on the core economic
phenomena, and therefore it covers many special cases. For example, most
customers pay when they purchase pizza, but some customers may receive an
invoice, and pay for all their purchases in a certain period at once. If the case of

14

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

Internet sales, customers must provide their credit card information before the pizza
is delivered, and Joe’s Pizzeria receives money from the customer’s bank later.
When the sale occurs in the restaurant, the customers pay after they get pizza,
either using cash or a credit card.

Fig. 8. The REA model for Joe’s Pizzeria sales process

All these cases are covered by the model in Fig. 8; this is very useful if we would
like to create a robust skeleton of a software application.

Customers may order pizza over the Internet. In this case, a software business
application creates an electronic Sales Order, which specifies a commitment of
Joe’s Pizzeria to sell a specified Pizza to the Customer, and a commitment of a
Customer to pay for the Pizza a specified amount of Cash.

The Sales Order, see Fig. 9, is an example of a contract between the economic
agents Joe’s Pizzeria and the Customer. The Sales Line and the Payment Line are
not economic events; they are commitments to perform the economic events in
well-defined future. The Sales Line is a commitment to perform the event Sale, and
the Payment Line is a commitment to perform the event Cash Receipt in the future.

Fig. 9. The REA model for the sales process with sales order

15

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

The Sales Order often contains terms specifying what should happen if the
commitments are not fulfilled, such as when the payment arrives late, or the
customer is not satisfied with the pizza. The fact that a contract can be represented
as a computer model is important for automatic tracking of the state of the contract
at runtime, and also for computer-assisted evaluation of complicated financial
contracts.

3.2.2 PURCHASE PROCESS

When Joe’s Pizzeria purchases tomatoes, cheese, pepperoni, flour and other raw
materials, it essentially exchanges the raw material for cash. Vendor gives Raw
Material to Joe’s Pizzeria, which gives it Cash in return. For Joe’s Pizzeria, the
Purchase process represents an outflow of Cash and an inflow of Raw Material,
see Fig. 10.

Fig. 10. Purchasing raw material is an exchange of raw material for cash

The REA model for the process of purchasing raw material is illustrated in Fig. 11.

Fig. 11. The REA model for the purchase process

The Vendor and Joe’s Pizzeria are economic agents, the Raw Material and Cash
are economic resources. The transfer of ownership of the Raw Material from the
Vendor to Joe’s Pizzeria is an increment economic event (we call it Purchase), and
the transfer of ownership of Cash from Joe’s Pizzeria to the Vendor (we call it Cash
Disbursement) is a decrement economic event; the increment and decrement are
from Joe’s Pizzeria perspective.

Similarly as for the REA model for sales, the REA model for purchases covers
many special cases. Some raw materials can be paid by check or bank transfer;
some can be made in different currencies. There can be several purchases paid
using a single payment, and a single purchase can be paid in several installments.

16

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

The model tracks the information about which purchases correspond to which cash
disbursements, but abstracts from technical details and does not specify the order
of these transactions. Again, this is useful if the skeleton of a software application is
based on this model, because it does not have to be changed if some technical
aspects of the purchase process change.

3.2.3 LABOR ACQUISITION PROCESS

Joe’s Pizzeria employees provide their work (they produce and sell pizzas during
specified periods of time) and receive their salary in return. Labor acquisition is
essentially an exchange of Labor (the worked hours) for Cash. Employee sells his
labor to Joe’s Pizzeria, which gives him Cash in return. For Joe’s Pizzeria, the
Labor Acquisition process represents an outflow of Cash and an inflow of Labor,
see Fig. 12.

Fig. 12. Labor acquisition is an exchange of worked hours for cash

Fig. 13. The REA model for the labor acquisition process

The REA model for the labor acquisition process is illustrated in Fig. 13. The
Employee and Joe’s Pizzeria are economic agents; the Employee provides Labor
and receives Cash, and Joe’s Pizzeria provides Cash and receives Labor. Labor
(the worked hours) and Cash are economic resources. The Labor Acquisition is an
economic event that occurs over periods of time (during the employee’s working
hours), while Cash Disbursement is an instantaneous event that occurs once a
week or month when the Employee receives his paycheck.

The REA model in Fig. 13 can be applied to many forms of acquiring labor; it can
be applied for full employment, temporary work, consulting, as well as for work
acquired according to various other forms of contracts.

3.2.4 SUMMARY

The REA model focuses on the core economic phenomena and abstracts from
technical and implementation details. This has several advantages.

17

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

Firstly, the REA model abstracts from the technical aspects of the transfer of the
resources. Cash can be transferred as bills and coins, as a check or as a credit
card transaction. Customers can pick pizza themselves, or pizza can be delivered
to their address. For all these cases we can apply the same REA model, which
does not have to be modified even if the technical infrastructure supporting the
business changes.

Secondly, the REA model abstracts from the order in which the economic events
occur. Usually, pizza is paid at about the same time as it is given to the customer,
but sometimes it is paid for beforehand, and sometimes it can be paid by credit
card and there is a significant delay between the sale of pizza and the transfer of
cash. If the business process was specified as a scenario consisting of a sequence
of events, the business application would support only the scenarios identified at
design time. The REA model allows the business application to flexibly record
everything that actually happened. The actual order of events emerges at runtime,
rather than being specified at design time.

Thirdly, for each REA model apply certain rules: each increment must be related to
a decrement, each economic event must have a provider and recipient agent, and
each resource must be related to both increment and decrement. Therefore,
application designers can ask relevant questions leading to the discovery of
missing information in the user requirements, and can construct the model even if
the initial specification is incomplete.

The three illustrated models for the business processes Sales, Purchase and Labor
Acquisition have many common features. They all model the transactions between
Joe’s Pizzeria and its trading partners as exchanges of economic resources.

These models can be generalized into a model at a higher level of abstraction,
illustrated in the next chapter. The models for sale of pizza, purchase of raw
materials and labor acquisition are examples of the REA EXCHANGE PROCESS
PATTERN.

3.3 REA EXCHANGE PROCESS PATTERN

Trade is the voluntary exchange of goods, services, or money

Context
You are an application designer developing a business application. You are trying
to create an object model of a business application and struggling to find the right
structure for the model and the right relationships between entities in the model.
You know the user requirements; they can be in a written document or non-written

18

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

information obtained by an ongoing dialog with the users; but you know the
requirements are incomplete. You want to know the right questions to ask to better
understand the application domain. You also want the model to be consistent and
robust enough for future changes in user requirements.

Problem
How does one create a robust skeleton of an object-oriented model for interactions
between the enterprise and it trading partners? User requirements are not a
sufficient source of information, because they are known to be incomplete, often
contradictory, and to change over time, and it is often impossible to find what
requirements are missing. Shortly, you would like to create a business application
that will satisfy even some of user requirements that have not been communicated
to you.

Forces6
The REA exchange process pattern resolves the following forces:

 The modeled software application should provide information about how the
interactions between the enterprise and its trading partners change the value of
the economic resources of the enterprise. The application should keep track of
the increases and decreases of the value of the resources that are under the
control of the enterprise, and should record which resources were exchanged for
which others.

 Application designers want to concentrate on the fundamentals of the users’
business, and separate those requirements which are likely to change. The
fundamentals are often so obvious to the users of business applications that they
do not communicate them, and they remain hidden until late stages of software
development.

 The model should be consistent with the business domain rules. Application
designers want to ensure that the model is consistent, complete, and correct,
with respect to the domain rules.

 Application designers want to include business semantics into the entities in the
application model. Semantics based only on the names of the entities is not
good enough because it relies on common knowledge, and common knowledge
is not available to software applications.

Solution

Model the interactions between the enterprise and its trading partners as
exchanges of economic resources.

Each exchange consists of at least one increment economic event that increases
the value of a resource of the enterprise by transferring rights to the resource to or
from other economic agents. Every increment event is related to at least one
decrement economic event that decreases the value of a resource of the enterprise
by transferring rights to the resource to or from other economic agents. We call the

6 In the pattern literature the term forces is used for the constraints that restrict the solution of
the problem, requirements, and properties that the solution should have.

19

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

relationship between the increment and decrement economic events exchange
duality, or in short, exchange. The exchange duality is a many-to-many relationship,
indicating that in the application model there must be at least one decrement for
each increment, and vice versa. Therefore, the exchange duality in the application
model can be an n-ary relationship, that relates several increment and decrement
entities.

In order for an exchange process to add value, the overall increase in value of the
resources related to the increment events should be greater than the overall
decrease in value of the resources related to the decrement events.

Fig. 14. The REA exchange process

Each economic event is related to an economic resource, see Fig. 14. The
relationship between an increment and a resource is called inflow, the relationship
between a decrement and a resource outflow. In the application model there must
be exactly one economic resource for each economic event, and at least one
increment and one decrement for each economic resource.

Each economic event is related to two economic agents. The economic event in the
exchange process transfers rights to the economic resource from one agent to
another. When the event occurs, the provider agent loses rights to the resource,
and the recipient agent receives the rights. In the application model for each
economic event there must be at least one provider and at least one recipient
agent. For each agent, there can be zero or more economic events.

Note that the model in Fig. 14 determines the rules for constructing the application
model. The application model determines the structure of the runtime instances.

20

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

The following domain rules apply for any application model describing the REA
exchange process.

Every increment economic event must be related by exchange
duality to a decrement economic event, and vice versa.

Every increment economic event must be related by inflow
relationship to an economic resource.

Every decrement economic event must be related by outflow
relationship to an economic resource.

Every economic event must be related by a provide relationship to an
economic agent, and by a receive relationships an economic agent.
At runtime, these two agents must represent entities with different
economic interests.

Resulting Context
The domain rules in this pattern allow application designers to derive new facts
from the facts provided by the users, and to formulate questions leading to the
discovery of new facts. Therefore, a business application can meet most or all user
needs, even if the user requirements and the designers’ knowledge of the user
needs are incomplete.

Note that at runtime, for some period of time, there might exist an instance of an
increment event that is not paired in exchange relationship with a decrement event.
This temporary imbalance results in a claim between economic agents. The claim
can be materialized, for example as an invoice. The concept of a claim is described
in the Hruby et al. (2006).

3.4 HOW JOE’S PIZZERIA OBTAINS PIZZA

The REA EXCHANGE PROCESS pattern does not apply, because Joe’s Pizzeria does not
obtain pizzas from its trading partners

3.4.1 PRODUCING PIZZA

Joe’s Pizzeria produces pizza from Raw Materials such as dough, pepperoni,
tomatoes and cheese, by using an Oven and by consuming Labor. The process of
producing pizza is essentially a conversion (transformation) of the Raw Material,
Labor (the worked hours) and the Oven (the time when the oven has been used)
into a Pizza, see Fig. 15. The Raw Materials become part of Pizza, they are

21

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

consumed during production. Employee’s Labor is also consumed; the time when
the employee has worked on pizzas is gone when the pizza is finished, and is not
available anymore. On the other hand, the Oven can be used again, although it
might need some cleaning and maintenance after a Pizza has been baked.

In principle, there are also other resources required to produce pizza, such as the
kitchen in the building in which Joe’s Pizzeria is located, heating of the building, and
maintenance of the oven. Joe has decided he is not interested in tracking how they
are transformed into each Pizza. Therefore we do not model them as economic
resources in this process.

However, Joe might decide to include the resources such as maintenance of
kitchen equipment and heating of building in the model, and consequently, REA
software would be able to determine how each of them contributes to the value of
each individual pizza. This is not possible in any solutions based on sustaining
technologies, where use and consumption of such resources are considered as
“overhead”.

Fig. 15. The pizza production process

The REA model for pizza production is illustrated in Fig. 16. The Material Issue,
Labor Consumption, and Oven Use are decrements of resources, because they
decrease the value of the Raw Material, Labor and Oven. The Pizza Production is
an increment event, because it creates a new resource with a positive value.

Fig. 16. The REA model for the pizza production

The economic resources Raw Material, Employee Labor and Oven are under the
control of the employees Supervisor, Cook and Waiter. The employees physically
control the resources on behalf of Joe’s Pizzeria, but they do not own them, neither

22

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

do they have any legal rights to these resources; the model in Fig. 16 illustrates that
the economic agent Supervisor issues the Raw Material to the agent Cook, who
bakes a Pizza and passes it to the Waiter. The Supervisor also provides Oven to
the Cook to bake a Pizza. To explain who controls Labor requires deeper analysis
(see the section on Labor in the Modeling Handbook): the Supervisor controls
Cook’s Labor, he assigns a task to the Cook; the Cook consequently takes of the
control of his Labor and consumes it to produce a Pizza.

3.4.2 SUMMARY

The REA model focuses on the core economic phenomena and abstracts from
technical aspects of the conversion. This has several advantages.

The model answers the question as to which economic resources have been used,
consumed and produced during the process. The economic events provide the
information on when, where and how the changes of the resources occurred, and
the economic agents provide the information on who controlled the economic
resources during these changes. This is the information the business decision
makers need in order to plan, monitor and control the economic resources.

The REA model does not imply any restrictions on the time order in which the
economic events occur. If the users of a business application wish to specify the
desired order of events, the model can be extended using commitments (described
in the SCHEDULE PATTERN) to specify when the events should occur. However,
the model can still record what actually happened, and thus determine the
difference between the schedule and the actual production.

In addition to producing pizza, Joe’s Pizzeria performs additional activities in order
to keep the company running. Cleaning of the restaurant and maintenance of the
equipment are the examples. If Joe schedules the pizza production in order to
purchase the right amount of raw materials, or if he has an accountant who keeps
his financial books, the planner’s and accountant’s labor are transformed into the
services that, as their end result, make Joe’s Pizzeria a better company. The
cleaning, maintenance, planning, accounting are essentially conversions of labor
and tools into other economic resources.

The pizza production, and the abovementioned processes are examples of a
pattern, the REA CONVERSION PROCESS.

23

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

3.5 REA CONVERSION PROCESS PATTERN

Photo by Ulrik de Wachter

Conversion is a physical, structural, or design change or transformation from one state or
condition to another

Context
You are an application designer developing a business application. Among the
business processes of the enterprise, there usually are one or more processes that
create new products or services, or add value to the existing ones. These
processes might be specified by the users of a business application, but you know
the user requirements are incomplete. You want to know the right questions to ask
to better understand the application domain. You also want the model to be
consistent, and robust against future changes in user requirements.

Problem
How does one create a robust skeleton of an object-oriented model for a business
process that creates new products or services, or adds value to the existing ones?
User requirements are not a sufficient source of information, because they are
known to be incomplete, often contradictory, and to change over time, and it is
often impossible to find out what requirements are missing. In short, you would like
to create a business application that will satisfy even some of the user requirements
that have not been communicated to you.

Forces
The solution to this problem is influenced by four forces.

 The model should provide information about how the process of creating and
modifying resources influences their value, and when the value has been
changed.

 The model should provide information about who was responsible for the
resources and when.

 The model should capture the fundamentals of the users’ business, and filter out
those user requirements that are likely to change.

 The model should be consistent, complete, and correct with respect to the
business domain rules.

24

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

Solution
Model the process that creates new products or services or adds value to the
existing ones as a conversion of some economic resources to others. During the
conversion, the enterprise uses or consumes economic resources in order to
produce the resources of the same or another kind.

Each conversion consists of at least one increment economic event that increases
the value of the resource by modifying its features, and at least one decrement
economic event that decreases the value of a resource by modifying its features.
The increments and decrements in the conversion processes typically occur over a
period of time.

Each increment event is related to exactly one economic resource by a relationship
called produce. The produce relationship means that the economic event creates a
new economic resource or modifies some features of an existing resource. Each
decrement event is related to exactly one economic resource either by a use or by
a consume relationship. The consume relationship means that the economic
resource does not exist after the decrement event (the resource is consumed). The
use relationship means that the economic resource still exists after the decrement
event, but some of its features have been modified.

In order to keep track of which resources have been used or consumed in order to
produce others, the increment and decrement economic events are related by the
conversion duality relationship, or in short, conversion. The conversion duality is an
n-ary relationship; in the application model there can be many increment and many
decrement events related by a single conversion duality.

Each economic event is related to two economic agents. The economic event in the
conversion process transfers the control over the economic resource from one
agent to another. Each event is related to exactly one economic agent by a provide
relationship, and to exactly one economic agent by a receive relationship, see Fig.
17. The transfer of control can occur at the beginning, at the end or during the
economic event. Each agent can be related to zero or more economic events.

Fig. 17. REA conversion process

25

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

In order for a conversion process to add value, the overall increase in value of the
resources related to the increment events should be greater than the overall
decrease of value related to the decrement events, over the period reflecting the
entrepreneurial goals of the enterprise.

The following domain rules apply for any REA application model describing the
conversion process.

Each increment economic event must be related by a conversion
duality relationship to a decrement economic event and vice versa.

Each increment event must be related by a produce relationship to an
economic resource.

Each decrement event must be related either by a use or by a
consume relationship to an economic resource.

Each economic event must be related by both provide and receive
relationships to an economic agent.

Resulting Context
The domain rules in this pattern allow application designers to derive and discover
new facts from the facts provided by the users of a business application. Therefore,
a business application can meet most or all fundamental user needs, even if the
user requirements and the designer’s knowledge of users’ needs are incomplete.

Note that at runtime, for some period of time, there might exist a decrement event
that is not paired in conversion duality with an increment event. For example, the
oven must be turned on good time before the baking of pizza can start.

4 DESCRIBING EVENTS THAT COULD OR
SHOULD HAPPEN

The REA models in the previous section described economic exchanges or
conversions that actually occurred. The purpose of these REA models in the
previous section is to be able to record every possible scenario that may happen,
and therefore these models are as flexible as the reality is. There are logical
constraints determining what is physically possible (such as resources must exist
before they can be used or consumed), but they are specified as logical constraints,
and not as time sequences. What comes first, second, etc. is determined at
runtime7.

However, we would also like a business application to describe what events should,
could, or should not occur under certain conditions. For example, trading partners
often agree upon transactions that will occur in the future. Likewise, not everything
is allowed; law, culture, and internal company rules constrain the economic

7 If we would made a software solution specifying, for example, that Joe always sells pizza
first and then customer pays, then if the customer would occasionally pays beforehand (or
pays more than expected), then we do not want an application to respond by "Your application
has encountered a problem and needs to close. We are sorry for the inconvenience. If you
were in the middle of something, the information you were working on might be lost. Please
tell your software vendor about this problem. We will treat your business data as confidential
and anonymous".

26

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

exchanges or conversions that are possible or desirable in any situation. For
example, rules might specify what qualification of employees is needed to perform
certain operations, or what kind of equipment is needed to transport hazardous
materials.

This section describes how to make a software application aware of the rules and
constraints, and help users act upon them. By separating the operational level
(described in the previous section), and the knowledge8 level (described in this
section), the software application is able to register events that do not conform to
the rules, and respond in an appropriate way. For example, the business
application could inform the user of the rule violation, advise him on what to do
instead, and prohibit him from committing or executing an illegal exchange or
conversion.

The REA COMMITMENT pattern specifies which events economic agents agreed
upon to occur in the future. The central patterns in this section are the REA
CONTRACT PATTERN and the REA SCHEDULE PATTERN, that bind together
commitments and terms, which instantiate additional commitments in case the
agreed commitments have not been fulfilled. The POLICY PATTERN9 describes
certain kinds of business rules, the rules or restrictions that the enterprise wants to
apply to the economic events and commitments in which it participates.

4.1 REA COMMITMENT PATTERN

Sales order lines are not economic events; they are promises of economic events

Context
Most economic events do not occur unexpectedly. Economic events are usually
scheduled or agreed upon beforehand by economic agents. For example, a sales
order line is a promise to sell goods to a customer; the total price is a customers’
promise to pay for the goods, and the seller’s promise to accept the payment.

Problem
How do we model promises of future economic events?

Forces
Solving this problem requires the resolution of the following forces:

8 The terms operational and knowledge level have been explained and used in (Fowler 1996)
9 I do not include the POLICY pattern to this paper. Please refer to (Hruby 2006) for details.

27

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

 Application designers would like to have a mechanism in the application model
specifying details about the promises of economic events. Economic events
cannot be used for this, because economic events specify actual increments and
decrements of resources, while promises result only in reservations of
resources.

 There might be (and usually is) a difference between plans and what actually
happens. The users of a business application would like to know whether the
economic events occurred as they were promised, and informed about eventual
differences.

 If an enterprise promises to give its own resources to its trading partners, users
of business application would, most likely, like to know, what resources to expect
in return. Conversely, if an enterprise expects to receive some resources, the
users of business application would like to know what resources its trading
partners expect.

 If an enterprise schedules to the production of resources, users of a business
application would like to know what resources it would require to use or
consume. Conversely, if an enterprise plans to use or consume resources, the
users of a business application would like to know what resources will be
produced from them.

 The users of a business application would like to know who should be
responsible for the received or produced resources, and who should be
responsible for the resources used or consumed during the production or given
to other economic agents.

 For each promised exchange, the users of a business application would like to
know the trading partners to whom the resources should be transferred, and
from whom they should be received.

Solution
Model the promise of the economic event as a commitment entity. A commitment in
exchange processes represents obligations of economic agents to provide or
receive rights to economic resources. A commitment in conversion processes
represents scheduled usage, consumption, or production of economic resources.

Each commitment is related to an economic event by a fulfillment relationship,
representing the fact that commitments are fulfilled in the future by one or more
economic events executed by the participating economic agents, see Fig. 18.
Commitments have usually properties for the Scheduled Date or period of the
economic event, and the Scheduled Value of the event.

The Scheduled Value does not need to be expressed as an actual number, but, for
example, as a rule. For example, the price of a service can be determined
according to actual costs.

28

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

Scheduled value
Scheduled date of event

Commitment

Actual value
Actual date of event

Economic Event

1..*

0..*
fulfillment

Fig. 18. Commitment and economic event

Each promised exchange and conversion consists of at least two commitments:
increment commitments, which are expected to increase the value of economic
resources, and are fulfilled by increment economic events, and their related
decrement commitments, which are expected to decrease the value of economic
resources, and are fulfilled by decrement economic events. The relationship
between increment and decrement commitments identifies which resources are
promised to be exchanged or converted to which others, and is called exchange
reciprocity or conversion reciprocity.

Fig. 19 illustrates relationships between commitments, economic events, economic
agents, and economic resources in exchange processes. Fig. 20 illustrates the
same relationships in conversion processes.

Fig. 19. Relationships of commitments in exchange process

29

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

Fig. 20. Relationships of commitments in conversion processes

Domain Rules
The following domain rules apply to any REA application model. As commitments
are a mirror image of the economic events at the policy level, the domain rules are
similar to the rules for the REA model at operational level, with one addition:
commitments must be fulfilled by economic events. These rules can be used to
ensure consistency of REA application models.

Each commitment must be related to a resource, and might (but does
not have to) also be related to a resource type.

Each commitment must be related by provide and receive
relationships to economic agents.

Each increment commitment must be related by an exchange or
conversion reciprocity relationship to a decrement commitment, and
vice versa.

Each increment commitment must be related by a fulfillment
relationship to at least one increment economic event, and each
decrement commitment must be related to at least one decrement
economic event.

A commitment that is part of a conversion must be related to the
economic event of a conversion process; likewise, a commitment that
is part of an exchange must be related to an economic event of an
exchange process.

Resulting Context
The reciprocity relationship often has additional functionality that relates together
the values of the increment and decrement commitments. For example, in
economic exchanges, the reciprocity can calculate the total price (value of the

30

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

outflow commitments) based on the line item prices (value of the inflow
commitments). The reciprocity might also validate that the cost (value of the outflow
commitments) is lower than the price (value of the inflow commitments). The
functionality of the reciprocity relationship can vary in different implementations; but
the fundamental point is that the increment and decrement commitments are
related.

4.2 REA CONTRACT PATTERN

Contracts are statements of intent that regulate the behavior among organizations and
individuals. Clauses of a good contract define what should happen in the cases of cancellation
and violation of the commitments

Context
Commitments represent the optimistic path of an exchange. For example, a sales
order contains commitments to deliver goods and commitments to pay. However,
sometimes goods are not delivered as expected and payments arrive late. Partners
usually also agree upon what should happen if the initial commitments are
unfulfilled.

Problem
How do we specify in the REA model what should happen if the commitments are
unfulfilled?

Forces
We need to balance the following forces:

 Commitments specify what economic events should occur. However, in the case
in which they do not occur as they should, economic agents usually agree upon
what should happen next. The rules specifying what should happen next can be
very complex, and keeping track of what should happen, and when, can be
cumbersome. Therefore, application developers would like this information
present in the business application, so that these rules and actions can be
monitored and triggered automatically.

 There are usually several inflow commitments paired through exchange
reciprocity with several outflow commitments. These commitments are often
considered a unit. Sometimes, it does not make sense to fulfill only some
commitments and not to fulfill others, but sometimes this is acceptable.
Application designers would like some entity to contain such rules.

 Intended recipients or providers of the resources might be different economic
agents than the agents that agree about the exchange.

31

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

Solution
If a commitment is unfulfilled, the terms of a contract specify additional
commitments.

A Contract is an entity in the REA application model containing increment and
decrement commitments that promise an exchange of economic resources
between economic agents, and terms. Commitments were discussed in the
previous pattern. Terms are potential commitments that are instantiated if certain
conditions are met. These conditions can be various, such as a commitment not
being fulfilled, or a resource being at a certain location. For example, economic
agents can agree upon penalties if the commitments are unfulfilled. If the
commitments are unfulfilled, the contract will instantiate a new commitment to pay a
penalty. The terms and commitments are the clauses of the contract

Every contract must be related to two or more economic agents by a party
relationship. These agents do not necessarily have to be the provider and recipient
of economic resources. The economic agents that are parties in a contract can be
different from the economic agents related to the commitments within the same
contract, and different from the agents participating in the economic events which
fulfill these commitments. For example, a flower shop can deliver flowers to a
different person than the one who placed the order, and the flowers will be paid for
by a third person, different from the persons who placed the order and received the
flowers.

Fig. 21. Contract, commitments and terms

Offer and Quote have the same structure as contracts that have not been accepted
by all parties in a contract. Economic agents negotiate the content of the
commitments and terms, and when they agree upon commitments and terms, the
quote or offer becomes a contract that binds the agents that are parties in the
contract. There is usually certain period of negotiations and draft versions from
when the offers and quotes are created and until the contracts are accepted by
both contracting parties.

32

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

Examples
Fig. 22 illustrates a business document for a simple sales order without delivery
and payment terms. The REA application model for this sales order is illustrated in
Fig. 23. The Sales Order contains two Sales Lines specifying the goods; the sales
line entity corresponds to the line item in Fig. 23. The Payment Line specifies the
price (i.e. expected amount of received cash); the entity Payment Line corresponds
to the Total line in Fig. 23.

Sales Order
Enterprise: Joe’s Pizzeria Date: 11 May, 9:15
Customer: Addy

Number Item Quantity Delivery Time

6128 Pizza Margherita 2 units 11 May, 18:00
8694 Cola 0.5l 1 unit 11 May, 18:00

Total 21,00 USD 11 May, 18:30

Fig. 22. A sales order is an example of a contract

DateSigned

«contract»

DeliveryTime
Quantity

«decrement
commitment»

PaymentTime
Amount

«increment
commitment»

Name
Number

«resource type»

1

0..*

«reservation»

«resource»

1

0..*

«reservation»

0..* 0..*

«reciprocity»

«agent» «agent»

1..*

1«clause» 1

1..*

«clause»

0..*1

«party»
buyer 10..*

«party»
seller

Fig. 23. The REA application model of a sales order

Fig. 24 illustrates an instance of this Sales Order (an actual sales order that
conforms to the application model from Fig. 23; the data of this sales order
corresponds to that in the example in Fig. 22.

Note that the REA model does not specify how to calculate Total, e.g. how the
amount of 21 USD is related to two units of pizza and 0,5l of Cola. The calculation
rules may range from a simple sum of the unit prices of the pizza and cola, to the
complex rules taking into the account the identity of the customer, date, time, and
volume of the sale. The fact that price calculation vary from one software
application to another, is the reason why the price calculation is not part of the REA
model. The REA model formulates the fundamental principles common to all
business applications. The section on Service Patterns shows how to extend the
REA skeleton by application specific functionality.

33

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

Fig. 24. An instance of the REA application model of a sales order

Fig. 25 illustrates a more complicated example of a sales order with shipment and
payment terms. For example, Joe’ Pizzeria and Addy agree that Joe’s Pizzeria will
sell five units of Pizza Margherita to Addy on Tuesday, and Addy will pay for them
on Friday. If Joe’s Pizzeria does not ship on Tuesday, Joe’s Pizzeria pays a 20
USD penalty to Addy on Friday. If Addy does not pay on Friday, he pays a 30 USD
penalty to Joe’s Pizzeria the following Monday. The informally sketched properties
of the terms and commitments can be implemented as DUE DATE PATTERN and
VALUE PATTERN; see section 6, Extending the REA Model Using Services.

Fig. 25. Simple contract with shipment and payment terms

34

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

If Joe’s Pizzeria does not deliver 5 units of Pizza Margherita on Tuesday, the
contract instantiates the penalty, and the model between Thursday and Friday
looks as in Fig. 26.

After the Penalty Payment commitment has been instantiated, all commitments still
need to be fulfilled by economic events. According to this contract, the Joe’s
Pizzeria still has to ship and the agent Addy has to pay, even in the case in which
Joe’s Pizzeria does not ship at all. A better contract might specify that the payment
should occur within a certain time period from the shipment.

Fig. 26. Simple contract after one of the terms’ conditions has been met

Resulting Context
The precise specification of commercial contracts is a subject of intensive research.
Simon Peyton-Jones, Jean-Marc Eber, and Julian Seward have developed a
functional language for financial contracts; this language does not have an REA
concept of reciprocity (Peyton-Jones, Eber 2003). A language for REA-compatible
contracts is being developed by Fritz Henglein and his students (Henglein 2005).

35

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

4.3 REA SCHEDULE PATTERN

Schedule is a series of things to be done or of events to occur at or during a particular time or
period

Context
Production processes usually do not occur spontaneously; a rational company
schedules the production and usage of its resources that should take place in the
future. However, production sometimes does not occur as planned because of
unexpected circumstances. A rational company would like to mitigate risks and
determine additional factors that should occur if the originally planned operation
does not occur as expected. Making a plan is a way to minimize the risks of missing
some resources in the middle of a production. The purpose of the plan is to make
sure that for all processes the needed resources are identified, as well as when
they will be needed.

Problem
How do we specify conversion processes that should occur in the future?

Forces
The following forces influence the solution:

 If use, consume, and produce economic events do not occur as commitments
specify, the enterprise would like to have an alternative plan to mitigate the
consequences. Application developers would like this information present in the
business application.

 A conversion process usually consists of several use, consume, and produce
economic events that have various, often complex dependencies on each other.
If some of these events do not occur as committed, the mitigation plan depends
on a combination of the values of the economic events. The application model
should contain an entity containing such dependencies.

 The economic agents that are responsible for the overall conversion process can
be different from the agents that control the economic resources.

Solution
A schedule is a collection of increment and decrement commitments in conversion
processes and mitigation plans. Mitigation plans instantiate additional commitments
under certain conditions, typically if some of the original commitments are
unfulfilled, see Fig. 27. Unlike invoking penalties in the contracts, instantiating

36

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

commitments from mitigation plans is usually not an automated task, and it requires
the assistance of the users of business applications.

A schedule is related by a party relationship to the economic agents that are
responsible for the schedule. The agents that are related to the schedule can be
different from the agents that are related to the commitments. There are usually two
agents related to the schedule. One of the agents sets the requirements of what
should be done (representing a client in the planning process), and another agent is
responsible for the actual conversion, (representing the supplier in the planning
process).

Fig. 27. Schedule

Example
The example in Fig. 28 illustrates a simple schedule of a project Produce Pizza,
assigned to Tom, Susie, and Mike. Project Produce Pizza is an increment
commitment, and the consumption of the labor of Tom, Susie, and Mike are
decrement commitments.

Fig. 28. A simple schedule

The REA application model corresponding to the diagram in Fig. 28 is illustrated in
Fig. 29. The schedule Project Schedule has an increment commitment Project,
which reserves (expects) the economic resource Pizza. The decrement
commitment Task reserves consumption of the economic resource Labor. The
properties start, finish, and duration can be implemented as DUE DATE SERVICE
PATTERN; see (Hruby et al. 2006).

37

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

Fig. 29. REA application model for simple schedule

Fig. 30 illustrates an instance of the REA application model from Fig. 29 that
corresponds to the example in Fig. 28.

Fig. 30. An instance of the REA application model of a schedule

There are many examples where the detailed schedule means success or failure
for the whole company. In just-in-time production, the resources are delivered
exactly when they are needed. Delivery too early would mean a need for storage
and late delivery can stall the production.

38

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

5 CAPITALISM FOR SOFTWARE ENGINEERS
Capitalism generally refers to an economic system in which the means of
production are privately owned; individuals and groups of individuals have the right
to trade capital goods, labor, land and money; and pricing is determined through
the operation of a free market.

The REA modeling framework expresses these principles in terms of software
design. Therefore, REA software is applicable more or less to all environments for
which the aforementioned economic principles apply. The simplicity of the model is
paradoxically a reason why it is sometimes difficult to understand.

For example, people sometimes expect that in the exchange process, the total
value of the resource given away should match the value of the resources received,
much as an order total should be calculated by summing up the prices of the line
items. This is a common practice, but not true in all cases.

Each resource that is subject to exchange has a different value for the economic
agents participating in the exchange. The REA model specifies nothing more than
an economic exchange can occur only if both economic agents perceive the value
of the received economic resources higher than the value of the given resources;
otherwise, they will not exchange them. For each agent, the value of the received
resources is higher10 than the value of the given resources, in the perspective of
the entrepreneurial goals of each agent.

For some modelers it is difficult to specify what an enterprise receives in return for
giving donations – for example, why CSC sponsors a cycling team. From the REA
perspective, CSC will receive more value in return for selling its services, taking into
the account the whole lifetime of the enterprise, than if it would if not support the
cycling team. Otherwise it would not do it.

In the conversion processes, such as software development or pizza production,
the overall incremented value of the produced resources (considering the
enterprise’s entrepreneurial goals) is also higher than the overall decremented
value of the consumed or used resources, but it does not mean that every actual
increment event must increase the value; the increment events increase the overall
value of the resources over the period reflecting the entrepreneurial goals of the
enterprise. A specific production run can be unsuccessful and sometimes the value
of the resources is decreased. However, on average the process must add value;
otherwise, a rational enterprise would not perform this process.

10 Some economists argue that in the conditions of ideal competition, these values are very
close. However, a precise statement (needed for software design) is that for each agent, the
received value is higher than the given value, but we are unable to determine how much.

39

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

6 EXTENDING THE REA MODEL USING SERVICES
The previous section, What Is the REA Model, discussed the structure of a
business application, which conforms to the laws of the business domain,
consisting of REA entities and their relationships. To build a useful business
application, this structure is only one of the things an application developer has to
determine. Users of business applications usually require additional functionality,
such as serial numbers, accounts, price calculations, and conversions between
units of measure. This functionality is essential in some applications, but it might
not be required in others. All depends on the users of a business application, actual
configuration of an application, and the common practices in their businesses.

In this part, Extending the REA Model Using Services, I describe how the REA
model can be extended to support specific functionality that originates in specific
user requirements, and which might change in time, often together with changing
technologies.

6.1 BEHAVIOR MAY NOT BE LOCALIZABLE INTO REA ENTITIES
Units of functionality that extend the REA model are usually not localizable into a
single REA entity. An example is illustrated in Fig. 31. This example shows the
economic resource Vehicle, which belongs to the Vehicle Category11, and is used
in the economic events Trip.

Fig. 31. Service patterns often crosscut REA entities

A License Plate Number of a vehicle is an attribute of the economic resource
Vehicle. The License Plate Number is usually not a random number. It is
constructed using a License Plate Rules, which is a property of Vehicle Category
(for example, numbers of police cars, military cars, and diplomatic cars are
constructed using different rules than numbers of other cars). The property License
Plate Rules contains rules specifying the uniqueness of the License Plate Number,
its format, its dependency on previous numbers or other attributes, and so on.
Therefore, the unit of functionality of a License Plate Number Series is present on
two REA entities, the resource and the resource group, and the number is
constructed by mutual collaboration between the part that resides on the resource
and the part that resides on the group.

Likewise, a Mileage of a Vehicle is calculated as the aggregated number of the trip
Distances the vehicle traveled. As Trip is an economic event, the Odometer is a

11 Category is an REA entity out of scope of this paper. Please see (Hruby 2006) for details.

40

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

unit of functionality present on two REA entities, the economic resource and the
economic event.

It is still useful to think about a License Plate Number Series, and about an
Odometer as single units of functionality, but these units span several REA entities.

6.1.1 ASPECT-ORIENTED PROGRAMMING

Aspect-oriented programming is one of the mechanisms for describing the
crosscutting features and manipulating them as modular units. Aspect-oriented
programming is based on the ideas of Gregor Kiczales, John Lamping, Anurag
Mendhekar, Chris Maeda, Cristina Videira Lopes, Jean-Marc Loingtier, and John
Irwin, (Kiczales 1996). This group at the Palo Alto Research Center, a subsidiary of
Xerox Corporation, developed a general purpose aspect-oriented language called
AspectJ, an extension of the Java programming language with aspect-oriented
features. Many other research centers have developed other aspect-oriented
languages, both general purpose and specific to a certain domain.

Aspect-oriented languages, such as AspectJ, express the structure of a software
application in the form of code in the programming language, and the crosscutting
concerns, or aspects, are also expressed as code. During compilation, both the
application code and the aspect code are combined together in a process called
weaving; see Fig. 32.

Fig. 32. Aspect-oriented programming at the code level (not framework-based)

Keeping in mind requirements such as extensibility and configurability, a
disadvantage of such programming languages is that the code has to be weaved
(which means recompiled) every time the functionality of an application (expressed
as application code or aspect code) changes. The consequence is that upgrading
an application is complicated and expensive.

Furthermore, since some or all functionality of an object is provided in the aspect
code, it is impossible for the weaver to guarantee a system-wide quality for an
application, because the weaver has no way of knowing what the aspect code
does.

6.1.2 SERVICE-ORIENTED APPROACH

To satisfy the requirements for extensibility, configurability, and upgradeability, I
use the service-oriented concepts to model the cross-cutting concerns. Every
service is represented at two levels of abstraction, the Service Type level and the
Model Configuration level.

41

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

The Service Type level specifies the types of the services, and metadata that can
be applied to the services in the application model. This level encapsulates the
business logic of the service, and specifies the configuration properties, which can
be set by application developers.

The Model Configuration level specifies the runtime attributes that can be set by the
users of business applications or automatically by the system. The model
configuration level also specifies which services are configured on which REA
entities; shown by dashed lines in figures in this section.

Advantage of a system with explicitly modeled service types is that software
business applications are much easier to configure, customize and upgrade than if
the services were to be represented only as code in a programming language.

Configuration of software business applications using the service patterns is
basically reduced to creating an REA model, setting the configuration parameters of
services, and specifying which services extend which objects. This can be done
using a specialized designer without writing any code in a programming language.

Furthermore, software applications are easy to upgrade, because all application
logic is encapsulated in the elements at the service type level, and it can be
extended independently of the configured application model. The upgrade of the
software application basically means replacing the components at the service type
level with components with upgraded functionality. The service developer designs
the interface or contract (the configuration properties and the corresponding
behavior) that the components at the service type level expose. If the upgraded
components support the old interface, the software applications can be upgraded
without reweaving or recompiling the application.

Even if the upgraded services are not backwards compatible (backward
compatibility is considered anti-pattern by some practitioners), it is possible to write
an upgrade script that modifies the configured applications to support the upgraded
services.

Quality of the software applications is easier to control, as all functionality of
business applications is encapsulated in the service types, and is therefore tested
by service developers. The service developers have full control over what
application developers may do with their service components. In other words,
providing application developers a domain-specific modeling language (specified by
service interfaces) reduces the number of errors the application developers can
make, compared to the situation in which the application developers write code in a
general programming language.

6.1.3 THERE IS NO COMPLETE LIST OF SERVICE PATTERNS

While with the REA model our aim was to find the minimal, yet complete set of
abstractions covering the business domain, this is not possible with service
patterns. Users of business applications will always need new features, and service
patterns provide a mechanism to add new features to a business application
without changing its fundamental structure.

42

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

There are service patterns waiting to be discovered. This section describes the
patterns I came across in developing business solutions, but it is not a complete list
of all patterns that might be needed in any line of business. As the REA structural
patterns define more or less a complete set of concepts, if application developers
identify user requirements for new functionality, they would likely be either new
service patterns which crosscut the REA entities or features in a domain other than
the business domain.

6.2 IDENTIFICATION SERVICE PATTERN

Barcode is a machine readable strip for automatic identification of items, by means of printed
bars of different widths

Context
People refer to real or imaginary things by their names. We name things to identify
them, so we can refer to them by their names and not just point to them and say
”this!”. By naming, we give things identities, but in real life they are not often unique.
Many things have more than one name, and sometimes a single name can refer to
different things, which is fine as long as everyone who uses that name knows what
thing it refers to. In business, people use serial numbers, production numbers, civil
registration numbers, and names.

Problem
How do we specify the identity of things represented by REA entities?

Forces
The solution needs to balance the following forces:

 An identity is a given feature; it is not an intrinsic part of the objects and things12.
Therefore, an REA application model must specify whether there is a business
reason requiring REA entities to have a distinct identity, and how that identity is
modeled. We could omit modeling identity of an entity, but then we could
distinguish different instances of this entity only by the values of their attributes.

 Users of business applications do not necessarily require that all REA entities
have an explicit identifier. For example, users of business applications might not
be interested in managing the identifiers of sales order lines.

 Some identifiers are unique in the universe, such as the GUID (Global Unique
Identifier); some are not unique, such as the first name and last name of a

12 The Ship of Theseus is a paradox that raises the question of whether an object, which has
had all its component parts replaced, remains fundamentally the same. Consequently, identity
is context-dependent; sometimes makes sense to regard an object's identity as the same for a
particular purpose even if it might be different for some other purpose.

43

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

person. Some identifiers are unique within a certain group, such as a serial
number, which is unique within the group of entities that belong to the same
number series.

 There are specific rules on how to construct identifiers. For example, the ISBN
(International Standard Book Number) or the numbers of major credit cards are
constructed in a way that enables verifying, using a simple calculation algorithm,
whether the number is valid.

Solution
The Identification Service Pattern can be used in situations in which application
developers want to specify the identity of REA entities. In the REA application
model, the Identification Service consists of Identifier that represents the name or
number of an REA entity, and Identifier Setup specifies the rules for creating the
Identifiers.

The Identifier Setup is often configured on group of REA entities that share the
same rules for creating identifiers, for example, on a group that belongs to the
same number series. The Identifier can be configured on any REA entity that needs
to be identifiable, including the groups. As not all REA entities are parts of some
group, the Identifier Setup is often omitted from the model, or is implicit in a
software application, for example, as a system table.

grouping

REA entities
with configured
Identification
Service

Service pattern

Service pattern
component

Service pattern
component

Fig. 33. Identification service in the application model

In all figures in this section, the Service Elements are shown as rectangles with
thick line; their runtime properties are shown similarly, as UML attributes. Properties
of the service component types (i.e. the properties whose values are set at the
service type level) are shown in the name compartment of the service. Values of
the properties of the service type are shown as text close to the line connecting the
service elements, similarly as UML attributes; for example, ‘Mandatory = yes’.

Solution Details
The service type level encapsulates the business logic of the service and
configuration parameters. At the service type level, the Identification Type defines
the Name of the type of identification, as well as other attributes. AutoNumber is a
Boolean function that can be set on or off to indicate whether the Identifier can be
automatically generated by the identification service or not; automatically generated
number is often referred to as a number series. Unique is a Boolean function that
can be set on or off to indicate whether or not the Identifier is required to be unique

44

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

at runtime. Mandatory is a Boolean function that can be set on or off to indicate if
the Identifier must be defined at runtime or can be undefined.

The Identification Type Service has two elements, Identifier Type and Identifier
Setup Type. These elements contain business logic for interpreting the ID rules,
and logic for creating and validating Identifiers. They do not have any configuration
parameters; just serve as metadata for the Identifier and the Identifier Type at the
application level.

The rules for creating new Identifiers can vary from simple series with linear
increments to rules that allow for validity checks of the identification strings, such as
credit card numbers. Legislation in some countries requires that numbers of some
business documents consecutive, without gaps, which imposes an extra
requirement on how the number is constructed. If an REA entity has been created
by omission and deleted after another REA entity of the same series has been
created, the ID Rule must be able to identify the gap in the series and reuse the
number of the deleted document.

Service Type

Model Configuration

Types of service components
that can be configured on REA
entities

ID rule
Last Number

Identifier Setup

Identification String

Identifier

0..*
1

Name
AutoNumber (Y/N)
Unique (Y/N)
Mandatory (Y/N)

Indentification
Service

Group
0..*

REA Entity
0..*

1..*1..*

Name

Identifier
Type

Name

Identifier
Setup Type

«instanceOf»

«instanceOf»

Any REA entity can have
several identifiers

Name of the Service Pattern
Configuration
properties of the
service type

Components of the
service that can be
configured on REA
entities

REA Entities extended by
services

Properties that
can be set at
runtime

1..* 1

Name of the
service type

Fig. 34. Details of the identification service pattern

The model configuration level specifies the runtime attributes that can be set by the
users of the business application, or automatically. At the application model level,

45

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

the Identifier is configured on the REA entity that should have some form of identity.
The Identifier contains the ID String, which provides an identity to each REA entity
instance.

The Identifier Setup is usually configured on a group13 of REA entities that share
the same ID rule for creating or validating an Identifier. The ID Rule determines how
the identification strings are created (users of business applications often use
combinations of letters and numbers). The ID Rule can also be used for validating
the identification strings entered manually by the users of the business application.
If the Identification Type service is an AutoNumber, the Identifier Type also has an
attribute Last ID, which defines the last used identification string in the series.

Examples
Sales Order Number is an identification that is an auto-number, is unique, and is
mandatory. As the Sales Order Number is an auto-number, the Identifier Setup
element contains the attribute Last Number.

«contract»

«grouping»

«group»

Last Number
ID Rule

«Identifier Setup»

Identification String

«Identifier»

REA entities
with configured
Identification
Service

Properties that can
be set at runtime

Property that can be
set at runtime

Type of service pattern component

«Identification»

Mandatory = yes
Unique = yes
AutoNumber = yes

Name of service pattern
component

Type of service pattern
component

Configuration properties
set at design time

Name of Service Type

Name of service pattern

Name of service pattern
component

Fig. 35. Sales order number

The Social Security Number (SSN) of a person is an identification that is not an
auto-number, is unique, and is not mandatory. The Identifier Setup has the name
SSN Numbering Scheme, and contains an ID Rule that determines how the social
security number is constructed or verified. The Identifier has the name Social
Security Number, and its ID String at runtime contains the social security number.

13 Group is an REA entity out of scope of this paper. Groups represent heterogeneous
collections of REA entities. Please see (Hruby 2006) for details.

46

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

«economic agent»

«grouping»

«Identification»

Mandatory = no
Unique = yes
AutoNumber = no

«group»

ID Rule

«Identifier Setup»

ID String

«Identifier»

Fig. 36. Social Security Number

Resulting Context
Sometimes, users of business applications use phone number, e-mail address, or
Internet address as identifiers of their trading partners. These numbers and
addresses have multiple and different semantics. Phone number can also be used
as a contact address, e-mail address as a contact address and destination location
(for sending electronic documents and products), and Internet address as a
description of the trading partner. In such cases, different services will contain or
refer to the same data (both identification and notification will contain or refer to the
same phone number).

There are several international standards specifying Identification Strings and ID
rules for economic resources and economic agents in various lines of business.
Examples are European Article Numbering (EAN) for industrial products,
International Standard Book Number (ISBN) for books, International Standard
Serial Number (ISSN) for periodicals, and International Standard Music Number
(ISMN) for printed music publications. For companies, the Data Universal
Numbering System (DUNS) is used. References to these standards can be found,
for example, in (Arlow, Neustadt 2003).

6.3 LOCATION SERVICE PATTERN

Location is a point in space

Context
Most economic events take place in time and space. For some economic events,
the location is an essential attribute characterizing them. Shipment, for example, is
an economic event in which an economic resource is moved from one location to
another. Users of business application are interested not only in departure and

47

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

destination, but often also in the actual location of the economic resource during the
economic event.

Problem
How do we specify where the economic events occur?

Forces
We need to balance the following forces when creating the model:

 Economic resources that are physical in nature are usually located at specific
places in the world. Users of business applications would like to know where a
resource is.

 Information modeled as an REA economic resource also has location.
Information is always stored on a medium that has a location, and information
can be transferred from medium to another.

 Economic events contain historical information about changes of features of
economic resources or transfers of rights to these resources. These changes
and transfers occur both in time and space.

 Economic resources can change their locations as a result of economic events
or by forces outside of the scope of the application model. If an economic event
changes the location of the resource, users of business applications would like to
plan, monitor, and control changes of locations of the resources.

Solution
In the REA application model, the Location is a service consisting of Position and
Route, see Fig. 37. Position specifies the actual position, and Route represents the
changes of the Position. Position is usually configured on an economic resource;
and Route can be configured on a commitment, which specifies the indented route,
or on an economic event, which specifies the actual route.

Fig. 37. Location service pattern

Solution Details
The service type level encapsulates the business logic of the service and
configuration parameters. At the service type level, the Location Service defines the
Name of the location service. The Location Service consists of Position Type and
Route Type, both having properties defining their names. The Route Type has a
method DisplayMap() that displays the actual route and navigation instructions.

The application model level specifies the runtime properties of the service
elements. At the application model level, the Position element has an attribute
Actual Position which contains the actual position of the resource. The Route

48

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

element specifies a route segment that represents a change in the resource
location. The Route element contains the properties Origin, Destination, and
Distance.

Origin
Destination
Distance

Actual Position

1

0..*

Name

0..*

0..*

Name

DisplayMap()

Name

«instance of» «instance of»

1
1..*

Fig. 38. Details of the location service pattern

Examples
The example in Fig. 39 illustrates a model of the location pattern configured as a
Shipment Address. The route segment element is configured on the Shipment
economic event; the Destination property represents the final address. The Position
element is configured on the Item; the Location property represents the actual
location of the Item.

Origin
Destination

Distance

«economic resource»

stockflow Name = Shipment Address

Name = Item Location

«economic event»

Location

Name = Shipment Route

Fig. 39. Shipment address

49

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

The location pattern can be used to model an itinerary that consists of several route
segments. The travel itinerary is essentially a schedule. There are several ways to
construct the REA model for an itinerary, depending on the level of detail of
information the users of business application would like to plan, monitor, and
control. I will present one possible design. The whole route is represented as an
increment commitment, Transport, and its Route service element contains the
origin and final destination of the economic resource Cargo. The decrement
commitment, Cargo on Carrier, represents the time interval on which the Cargo is
loaded onto a specific carrier; it is a decrement commitment because when Cargo
is on a vehicle, its possible use for other purposes is limited. The commitment
Cargo on Vehicle has a Route service element called Segment, representing a
segment of the scheduled transport. At runtime, there can be several instances of
the Cargo on Carrier commitment, for example, if cargo is transported using several
vehicles or means of transportation.

The other decrement commitment, Vehicle Use, has also a Route service element.
The Origin and Destination of the Vehicle Use element and the Origin and
Destination of the Cargo on Carrier element can be different, for example, if a
vehicle drives unloaded to the loading destination, and then transports Cargo and,
again, drives back unloaded. The cost of using unloaded vehicle should be
reflected in the cost of the transport, which is what the model does.

An itinerary usually also contains information about time, such as when cargo has
been loaded, unloaded, and reached the final destination. This can be modeled
using the DUE DATE SERVICE PATTERN on commitments and the POSTING
SERVICE PATTERN on economic events.

The location service pattern can also be configured on economic events instead of
commitments; the business application would then monitor the actual movement of
Cargo.

50

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

«clause»
«clause»

«economic resource»

«increment
commitment»

«produce»

«decrement
commitment»

«economic resource»

«use»

«Location»

«decrement
commitment»

«conversion»

«use»

«schedule»

«clause»

Location

«Position»

Origin
Destination
Distance

«Route»

Origin
Destination
Distance

«Route»

Origin
Destination
Distance

«Route»

Location

«Position»

«Location»

Fig. 40. Travel itineraries for cargo and vehicle

Resulting Context
How do we determine the shipping address of the customer? Some business
applications store a shipping address (as well as the billing address, and many
other addresses) as attributes of a customer. These addresses are then used as
default addresses for shipments, invoices, etc. Users of business applications have
the option to overwrite these addresses in case a customer wishes to use a
different address than his default address.

The described solution does not have a fixed default customer address. Economic
events contain all relevant historical information about business relationship
between the enterprise and the customer, and commitments that the enterprise
gave to the customer. The economic events and commitments also specify the
shipping, billing, and other addresses the customer has used in the past. The
address for the next shipment can then be determined by browsing the list of
economic events. The customer may then choose one of the existing destinations,
a new one, or one that the business application can suggest, for example, the
destination of the last shipment, as a default address. This solution is more flexible
than that of a fixed default address as a property of the customer entity because it
develops automatically as the enterprise’s information about the customer
develops.

51

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

6.4 NOTIFICATION SERVICE PATTERN

SMS (Short Message Service) is a text message to be sent and received to a mobile phone
via the network operator

Context
Various users of business applications should often be notified when certain events
occur, or when certain conditions become true. For example, both customer and
bank personnel might be interested in being notified when the customer account
has been overdrawn. Business applications can be configured to create and send
notifications automatically.

Problem
How do we notify users of business applications about changes in the REA
entities?

Forces
Several forces arise when designing the solution:

 There are different ways to contact users of business applications. The
notification can range from a message box window on a computer screen to
sending a letter to a specified address.

 Different users of business applications can be contacted in different ways.
Some users can be contacted in multiple ways. The method of notification can
vary, depending upon the user and upon the kind of notification.

 Different users are interested in different information resulting from the same
change.

Solution
Notification is a specific unit of functionality that encapsulates the mechanism for
notifying users of business applications. A notification service pattern consists of
Address, containing the way to contact the economic agent, and Message,
containing the information forwarded to the agent, as well as the logic determining
when the agent is notified.

52

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

Fig. 41. Notification service pattern

Service Type

Model Configuration

Name
Media Rule

Notification Service

Any REA Entity
0..*

Economic Agent
0..*

Notify()

Name
Message Rule

Message Type

Media

Address Type

«instance of» «instance of»

Address

Name
Street
City
State
Zip Code

US Address

e-mail

E-Mail
Address

phone number

Voice
Address

phone number

SMS
Address

Message

Country

Postal
Address

Name
Street
Locality
CEDEX postcode and area indicator

French Address

notification area

System
Address

e-mail

E-Mail
Message

media file

Voice
Message

text

SMS
Message

text

Postal
Message

text

System
Message

etc.

Fig. 42. Details of the notification service pattern

53

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

Solution Details
At the service type level, Notification Type contains the Name of the notification,
and encapsulates the business logic of forwarding messages to specific addresses.
The Media Rule defines which Media the specific Address is allowed to contain,
and hence determines which attributes a specific Address Type contains (for
example, street, city, and zip code for postal address), and consequently also which
message types can be delivered to which kinds of addresses; hence, the Media
Rule. Examples of Media are postal address, e-mail address, and SMS address.

The Message Type has the responsibility of creating a message. Name specifies
the name of the message type. The Message Rule attribute specifies how the
message will be created. The simplest approach is to use a predefined message for
each message type; a more complex approach is to create a message at runtime
by composing it from predefined information and relevant data available. When the
Notify() method is called, the message is created and the user notified.

At the model configuration level, Message can be configured on any REA entity,
and represents a message that can be sent to an Address. Message can be one of
the listed examples of messages (System, Postal, E-mail, Voice, SMS, and so on).
Address is usually configured on an economic agent, and can be one of the listed
examples of addresses. Each address contains different elements and rules. The
business logic at the service type level determines which message types can be
delivered on which address types.

Fig. 43. Notification on account level event

Examples
Fig. 43 shows an example of a Customer economic agent that is notified when its
Account level (a part of the Account Type element, see ACCOUNT SERVICE
PATTERN in Hruby et al. 2006) sinks below its credit limit. Customer is configured
with the Notification service, where both the Message and the Address elements
are configured at the Customer entity. The OnSinkBelow event of the Account
Level causes the Notify() message of SMS Message element to send an SMS
message with the Balance of the Bank Account service element as Text

54

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

A mobile phone operator, T-Mobile, in some countries sends a voice and an SMS
message to its customers every time a customer receives a message in his voice
mail. Fig. 44 shows how this functionality could be implemented using the
notification service pattern.

Fig. 44. Notification on new voice mail

Voice Mail Messages are economic resources that are members of the group Voice
Mailbox of a specific customer. Whenever someone records a new voice mail
message, the grouping relationship calls a Notify() method of the Voice Notification
and SMS Notification elements. These elements create the voice and text
messages and send them to the customer Phone Number.

6.5 INVENTOR’S PARADOX PATTERN

How do we discover a new service business pattern?

Context
REA is a modeling framework describing structure of business systems. The REA
concepts have not significantly changed during last ten years; therefore, we do not
expect any radical change in it in the near future.

In contrast, service patterns represent the functionality of the business applications
that originate in user requirements related to specific procedures or technologies. It
is natural to expect that users of business applications will require richer, more

55

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

powerful, and generally better software applications in the future. Therefore, it is
likely that any limited list of service patterns does not meet all future requirements
the users of a business application could possibly have. When application
designers implement business applications, they are forced to discover new
patterns originating from unexpected user requirements.

Problem
How to extend a business application in a consistent manner?

Forces
A solution is influenced by the following forces:

 Users of your business application require functionality that is not covered by the
service patterns we know about.

 Users of business applications sometimes require very specific features that are
not always good candidates for service patterns. Service patterns are
generalized and reusable units of business logic; therefore, it usually requires
substantial work to transform a specific user requirement into a business pattern.

 We would like a general rule or guidelines to help us formulate new business
patterns from new user requirements.

Solution
The solution is known as Inventor’s Paradox, described by the mathematician
George Polya (Polya 1982):

“A solution to a general problem is often simpler than a solution to a
specific problem.”14

In summary, the Inventor’s Paradox is as follows:

 Solve a specific problem by solving a more general problem.

 The general problem paradoxically has a simpler solution.

 But you have to invent an appropriate general problem which covers your
specific problem.

To apply the Inventor’s Paradox, application designers analyze the users’ business
problems and try to extract patterns that can be generalized. Then, they solve this
generalized problem as one or more service patterns. Finally, they solve each
specific problem by configuring the service patterns in a software business
application.

The guidelines above are general, and can be applied to solving problems in any
domain. In model-driven design for software in a specific domain, the application
developers must keep in mind the purpose of the domain, and generalize the

14 Polya’s original formulation was “The more ambitious plan may have more chances of
success, provided it is not based on a mere pretension, but on some vision of the things
beyond those immediately present.” We use the formulation by Karl J. Lieberherr (Lieberherr
1997).

56

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

specific problems in a way that is consistent with the domain. This sounds easy;
but, based on our experience, it is not.

We formulated the following guidelines to help application designers focus on
generalizing specific problems in the scope of the business logic domain.

The service patterns in the REA modeling framework

 have business semantics,

 specify large units of functionality,

 their implementation often crosscuts the REA entities.

These principles are described in more detail below.

Service Patterns Have Business Semantics

“What business problem does this requirement solve?” is probably the most
fundamental question to ask when examining a new user requirement. Users often
tend to ask for a low-level or computational functionality, and it is up to the
application designer to discover the real business purpose behind this requirement.
For example, is a function that computes a sum of numerical values a good
candidate for a service pattern in the business domain? Without domain-driven
modeling in mind, a designer might think that he can generalize this requirement
into an arithmetic operation pattern to cover subtraction, multiplication, and division
as well. Would it be a good service pattern? We need to discover why the users
need to sum values. Do the users need it for making an order total? Do the users
need it for calculating the stock value of the product? The arithmetic operation is
probably not a good candidate for a service pattern in the business domain, but
contract total or account might be.

Is a currency converter a good candidate for a service pattern in the business
domain? We need to discover why the users need a currency converter. If they
need it for calculating the value of a payment in another currency, for calculating
payment for international customers, and for calculating an offered price of the
product, then monetary value will be a better candidate for a business pattern than
a currency converter.

Service Patterns Specify Large Units of Functionality
If application designers develop a single business application for a specific
purpose, they probably do not care about reuse. If user requirements change, the
designers just change the application. However, if the application designers are
developing a framework that will be used to configure several business applications
in a product line, or to configure several very different business applications, then
they would like to identify the functionality that is most complex and difficult to
implement. Then, they can implement this functionality once in the reusable
framework, and configure the actual software applications.

In such an environment, the more the complex and difficult functionality is
implemented in the framework, the easier the job becomes for the application
designers in configuring the actual business applications, and the less the overall
amount of work (framework development plus application development).

57

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

Therefore, the more the larger, and most complex and most difficult units of
functionality is implemented as service patterns, the easier the job of the application
designers becomes. They can then focus on understanding and modeling users’
business problems, rather than on implementing them.

Implementation of Service Patterns Often Crosscut REA Entities
Service patterns often crosscut structural patterns; therefore, if a user requires new
functionality or a new data field on an REA entity, this will probably require some
collaboration with data on other REA entities.

An example is address. In many business applications customer and vendor
entities have addresses, such as shipping address and billing address. However,
the addresses are also properties of the purchase order, sales order, and invoice.
Therefore, it is useful to think of an address as a module having two elements: the
default address on an economic agent, and the actual address on an economic
event.

The address pattern presented in this paper even has different design, in which the
default address is dynamically derived from historical information specified by
economic events. Nevertheless, in both cases the address element crosscuts the
entities that originate from the domain categories.

7 WHY DO WE NOT HAVE REA APPLICATIONS
YET?

Actually, there are already some on the way.

REA Technology (http://reatechnology.com) has developed a model-driven REA
solution that provides for full traceability of planned, expected and completed
transactions; it is easy to understand by non-accountants as it uses the language
the managers and other business decision makers are familiar with from their
business. Due to the model-driven design, it can be tailored to meet specific needs
of an organization an order-of-magnitude faster than any enterprise solution based
on the traditional technology.

Workday (http://workday.com) is developing a new enterprise solution that can
support the REA principles, according to Mark Nittler
(http://www.aisvillage.com/rea25/mnittler.htm). Workday’s product, also
characterized as an on-demand alternative to ERP, provides features that current
ERP solutions can't.

Group Accounting developed by Bob Haugen (http://group-accounting.com) is a
new kind of business software for loosely-organized groups, believed to be one of
the most important business forms of the future. Group accounting, similar to joint
venture accounting, is difficult using traditional accounting, which can only be
performed from the viewpoint of a proprietor. The REA model makes group
accounting natural, as the REA accounting can be performed from the viewpoint of
any single company in the group as well as an independent observer,
simultaneously.

58

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

Although there are signs that the REA principles are becoming accepted,
sometimes it takes a long time for new software technologies to become
mainstream.

7.1 THE REA MODEL MIGHT BE A DISRUPTIVE INNOVATION
The term disruptive innovation, or disruptive technology, was introduced by Clayton
M. Christensen and described in his books (Christensen 1997, 2003). It is a
technological innovation, product or service that market leaders cannot deliver for
rational reasons, either because their best customers do not want it, or because it
would compete with existing and more profitable technologies. The technologies
are called disruptive because they have to be developed by different companies
than the established market leaders, and because they eventually overturn the
existing dominant technologies in the market, the new providers might eventually
displace the providers of the sustaining technologies. Examples of disruptive
technologies are small-size hard disks, digital photography and the Linux operating
system.

The REA model has many signs of disruptive innovations:

 Compared to prevailing technologies, it is simpler, smaller, more convenient to
use, and cheaper in terms of effort required to develop specific applications

 It currently underperforms the solutions from leading vendors of enterprise
resource planning systems in terms of available features and functionality, but
this is rapidly changing due to other technologies that have recently become
available.

 As leading firms’ most profitable customers do not want and initially can’t use
products based on disruptive technologies, the current leading vendors of
enterprise resource planning systems do not consider REA-based solutions a
rational choice.

As disruptive technologies are usually filling a role in a new market that the older
technology could not fill, business applications with embedded REA semantics
have a great potential to open new market opportunities based on converged
business models enabled by this new technology. The industrial impact will be
achieved by universality of this technology and its ability to operate outside local
markets.

The REA software applications will cause a major technological change in the way
enterprises monitor, control and process their business information, with potentially
huge economic impact. Compared to sustained technologies, where financial
administration is based on 15th century principles, the REA model makes available
an inexpensive model-driven platform with embedded generic business semantics,
purposely designed to utilize the full potential of modern information technologies.

59

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

7.2 CSC CATALYST AND THE REA MODEL
We at CSC will benefit from knowledge of the REA modeling framework that can be
used to design business solutions based on service-oriented architecture.

Fig. 45. CSC Catalyst domains of change

Fig. 45 illustrates CSC Catalyst domains of change. Business Area Architecture
(BAA) asks questions in six domains that define the Problem Space (the
requirements), and uses the Hexagon of Change as a means to ensure a complete
assessment. These questions (BAA 2007) are outlined in the table on the next
page, together with REA coverage of the answers to these questions.

Question Area Coverage by the REA Model

What
processes are
performed?

Process Covered. The REA model gives precise
answers that value-adding processes are
performed, and includes consistency rules
assuring completeness of the model. These
rules might lead to a discovery of essential
processes inadvertently not included in user
requirements.

How are the
processes
performed?

Process Covered. The REA model gives precise
answers to how each process adds value to
the company’s resources. How this added
value is technically achieved is specified by
service models that extend the REA model.

Where are the
processes
performed?

Process Covered. Location15 is a service pattern that
extends the REA model.

15 Some researchers argue that location should be part of the core REA ontology, because
events occur both in time and space. This approach called REAL (resources, events, agents,
and locations) is described, for example, in (Hollander 1999).

60

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

Who performs
the processes?

Organization Covered. The REA model contains the concept
of an economic agent, which gives precise
answers to who is involved in the process, his
or her role, and which economic events the
agent is related to.

What services
enable the
solution?

Service Covered. The REA model contains precisely
defined extension points for services. The
separation of the stable core and the
changeable services enables design of long-
living systems that can evolve over time.

What
information do
the processes
require?

Data Covered. The REA model is essentially a data
model. Furthermore, the REA model gives
precise answers to which data are essential for
the customer’s business (defined by
ontological categories) and which data are
supportive and might change over time
(defined by services).

What will the
user interface
be like?

Application Covered. The user interface can be
automatically generated from the REA model,
as discussed in the first chapter.

What
technology
supports the
processes?

Technology Not Covered. The REA model is technology
independent.

In addition to the BAA checklist, the REA model answers one other important
question:

Why are
processes
performed?

Process Covered. The concept of duality between
economic events specifies cause-and-effect
relationships between economic events.
Therefore, the REA model leads to a system
design that provides for full traceability of all
transactions that influence values of economic
resources.

This question cannot be answered by any other software design or modeling
method.

It should be noted that the REA model provides precise but sometimes unspecific
answers, as it has been illustrated in section 5, Capitalism for Software Engineers.
Precision, rather than specificity, is essential in model-driven design. Furthermore,
precise answers are very important in software design, as they prevent the modeler
from creating incorrect models from a business perspective. In order to achieve
specificity, the REA model must be extended by services, as illustrated in section 6,
Extending the REA Model Using Services.

61

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

7.3 THE REA MODEL IN NATIONAL AND INTERNATIONAL STANDARDS
The REA model as a universal business ontology is very useful for specifying
standards for electronic business. The REA model became the foundation for
several electronic business standards, such as ebXML16, UN/CEFACT17 and Open-
edi (ISO/IEC 15944-4)18. These standards have REA-based metamodels.

Although there are no direct legal requirements specifying a need for REA software,
financial reporting requirements specified by the Sarbanes-Oxley Act can be easily
met by REA software applications. Moreover, REA software provides for full
traceability of all transactions that influence values of economic resources, not only
financial transactions.

7.4 REA COMMUNITY
REA modeling is taught at many U.S. universities and business schools under the
topic of Enterprise Information Systems. In Europe it is taught at the University of
Gent, Belgium; Royal Institute of Technology in Stockholm, Sweden; and Technical
University of Denmark.

American Accounting Association organizes yearly REA workshops called SMAP
(Semantic Modeling of Accounting Phenomena), held every January since 2002.
Half of the attendees is usually teaching-oriented and half is research-oriented.

The First International REA Technology Workshop was organized in Copenhagen,
Denmark on April 22-24, 2004, and the Second International REA Technology
Workshop was on June 25, 2006, on Santorini Island in Greece, in connection with
the 3rd International Conference on Enterprise Systems and Accounting. The REA-
25 conference was held June 13-15, 2007, in Newark, Delaware, USA
(http://www.aisvillage.com/rea25/conference.html). An accounting interoperability
workshop sponsored by the National Science Foundation and held in May 2008 in
Washington had among the main topics REA, XBRL, accounting semantics, and
formal specification of enterprise ontologies. ICESAL08 (http://icesal.org), held in
July 2008 in Crete, Greece, had the REA model among its program topics.

A research-oriented mailing list is available at REATechnology@yahoogroups.com.

7.5 BOOKS ON THE REA MODEL
To date, four books on the REA model have been published.

Publication (Chang et al, 2007) shows how easy is to develop REA applications
using Microsoft Access. Publication (Hruby et al, 2006) is targeted to software
engineers and visionary managers at business software projects. Publications
(Hollander et al. 1999) and (Dunn et al. 2004) are targeted to students of
accounting.

16 Electronic business eXtensible markup language, http://ebxml.org/
17 United Nations Centre for Trade Facilitation, and Electronic Business,
http://www.unece.org/cefact/
18 ISO/IEC 15944-4:2006 Information technology - Business Operational View -- Part 4:
Business transaction scenarios – Accounting and economic ontology.

62

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

ACKNOWLEDGEMENTS
I’d like to express my thanks to Jesper Kiehn, one of few people who truly
understand what REA ontology is all about, Christian Scheller, the inventor of the
architecture that utilizes orthogonal separation of concerns in business domain,
William E. McCarthy and Guido Geerts, inventors of the REA model, for the
countless long discussions and their valuable insight.

Thanks to the participants of the Software Architecture Group of University of
Illinois at Urbana-Champaign, led by Ralph Johnson, for discussing the background
material used in this paper for several weeks, and making their discussions
available to me. Ralph Johnson also suggested describing REA exchange and
conversion as separate patterns, and using Joe’s Pizzeria as an example to explain
the REA model.

Several patterns have been reviewed at the writers’ workshops at the conferences
Viking PLoP 2002, 2004 and 2005. Thanks to the conference participants for their
feedback on the pattern style, and to Daniel May, Bob Hanmer, and Linda Rising
for shepherding the patterns.

63

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

REFERENCES
Appleton B (2000) Patterns and Software: Essential Concepts and Terminology,

http://www.cmcrossroads.com/bradapp/docs/patterns-intro.html

Arlow J, Neustadt I (2003) Enterprise Patterns and MDA: Building Better Software
with Archetype Patterns and UML, Addison-Wesley Professional

Arnold TRJ (1991) Introduction to Materials Management, 3rd edition, Prentice-Hall
Inc.

BAA (2007), BAA Essentials for SOA Final, PowerPoint slides for SOA Virtual
Academy Course, CSC, 2007

Borch SE (2004) Typification in REA, First International REA Technology
Workshop, Copenhagen 2004

Chang CJ, Ingraham LR (2007) Modeling and Designing Accounting Systems:
Using Access to Build a Database, John Wiley & Sons Inc

Christensen CM (1997) The Innovator's Dilemma, Harvard Business School Press

Christensen CM (2003) The Innovator's Solution, Harvard Business School Press

Coad P, Lefebvre E, DeLuca J (1999) Java Modeling in Color with UML, Enterprise
Components and Process, Prentice Hall PTR, New York

Cockburn A (2000) Writing Effective Use Cases, Addison-Wesley Professional

Coplien J (1996): Software Patterns, SIGS Publications, New York,

Czarnecki K. Eisenecker UW (2000): Generative Programming - Methods, Tools,
and Applications, Addison-Wesley

David JS (1997) Three events that define an REA Methodology for Systems
Analysis, Design and Implementation. Proceedings of the Annual Meeting of
the American Accounting Association, 1997

Dunn CL, Cherrington OJ, Hollander AS (2004) Enterprise Information Systems: A
Pattern Based Approach, McGraw-Hill/Irwin, New York

Evans E (2003) Domain-Driven Design: Tackling Complexity in the Heart of
Software, Addison-Wesley Professional

Eriksson HE, Penker M (2000) Business Modeling with UML, John Wiley & Sons,
Inc.

Fowler M (1996) Analysis Patterns: Reusable Object Models, Addison-Wesley
Professional

Graham I (1998) Requirements Engineering and Rapid Development, Addison
Wesley

Geerts GL, McCarthy WE (1997) Using Object Templates from the REA Accounting
Model to Engineer Business Processes and Tasks. Paper presented at
European Accounting Congress, Graz, Austria.

Geerts GL, McCarthy WE (2000a) The Ontological Foundations of REA Enterprise
Information Systems. Paper presented at the Annual Meeting of the American
Accounting Association, Philadelphia, PA.

Geerts GL, McCarthy WE (2000b) Augmented Intensional Reasoning in
Knowledge-Based Accounting Systems. Journal of Information Systems,
Volume 14, No. 2, 2000, pp. 127-150.

64

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

Geerts GL, McCarthy WE (2002) An Ontological Analysis of the Primitives of the
Extended REA Enterprise Information Architecture” at
http://www.msu.edu/user/mccarth4/

Greenfield J, Short K (2004) Software Factories: Assembling Applications with
Patterns, Models, Frameworks, and Tools, Wiley and Sons

Gruber TR (1996) A Translation Approach to Portable Ontologies. Knowledge
Acquisition, 5(2):199-220

Gordijn J (2002) Value based requirements engineering: Exploring innovative e-
commerce ideas, Vrije Universiteit Amsterdam.

Forman IR, Danforth SH (1998) Putting Metaclasses to Work, A New Dimension in
Object-Oriented Programming, Addison-Wesley Longmann, Inc.

Haugen, B (2005) Resources and Rights, Discussion in REA Technology Mailing
List, http://groups.yahoo.com/group/REATechnology

Hay DC (1996) Data Model Patterns, Conventions of Thought Dorset House
Publishing, New York

Hay DC, Healy KA (2000) Business Rules, What Are They Really? The Business
Rules Group

Hessellund A, Balthazar S, Chohan A (2005) REA-VMI Model, A General
Framework for Vendor Managed Inventory (In Danish). MSc. Thesis, IT
University Copenhagen

Henglein F et al (2006): Formal Specification of Commercial Contracts, Journal on
Software Tools for Technology Transfer

Hollander AS, Denna E, Cherrington OJ (1999) Accounting Information Technology
and Business Solutions, Irwin/McGraw-Hill

Hruby P, Kiehn J, Scheller CV (2006): Model-Driven Design Using Business
Patterns, Springer

IDEF0, Integration Definition for Function Modeling (1993) National Institute of
Standards and Technology, FIPS publication 183,
http://www.idef.com/idef0.html

ISO/IEC 15944-4:2006 Information technology - Business Operational View -- Part
4: Business transaction scenarios – Accounting and economic ontology.

Jaquet M (2003) Realistic – A REA Model without Perspectives (In Danish). MSc.
Thesis, IT University Copenhagen

Kiczales G et al (1996) Aspect-Oriented Programming, ECOOP 1996, Jyväskylä,
Finland

Lampe JC (2002) Discussion of an Ontological Analysis of the Economic Primitives
of the Extended-REA Enterprise Information Architecture. International Journal
of Accounting Information Systems, March 2002 pp.17-34.

Lieberherr K J (1997) Inventor’s Paradox,
http://www.ccs.neu.edu/research/demeter/adaptive-patterns/AOP/IP.html

Marshall C (2000) Enterprise Modeling with UML: Designing Successful Software
Through Business Patterns, Addison Wesley Longman, Inc.

McCarthy WE (1982) The REA Accounting Model: A Generalized Framework for
Accounting Systems in a Shared Data Environment. The Accounting Review
(July 1982) pp. 554-78

65

CAPITALISM IN UNIFIED MODELING LANGUAGE
DESIGNING SERVICE-ORIENTED APPLICATIONS THAT UNDERSTAND YOUR BUSINESS

Mellor SJ, Balcer MJ (2002) Executable UML, A Foundation for Model-Driven
Architecture, Addison-Wesley

Meyer B (1997) Object-Oriented Software Construction, second edition, Prentice
Hall, Inc.

MDA Guide Version 1.0.1 (2003) OMG document omg/03-06-01.

Osterwalder A (2004). The Business Model Ontology - a proposition in a design
science approach, Ecole des Hautes Etudes Commerciales, University of
Lausanne, Lausanne.

Peyton-Jones S, Eber JM (2003): How to write a financial contract. In Jeremy
Gibbons and Oege de Moor, editors, The Fun of Programming. Palgrave
Macmillan

Polya G (1982) How to Solve It: A New Aspect of Mathematical Method, Princeton
University Press

Porter M (1980) Competitive Strategy: Techniques for Analyzing Industries and
Competitors, Free Press, New York

Rising L, Manns ML (2004) Fearless Change: Patterns for Introducing New Ideas,
Addison-Wesley Professional

Rothbard MN (1978) For a New Liberty, Libertarian Manifesto, Collier Macmillan
Publishers, London

Samuelson PA, Nordhaus WD (1989) 13 edition, Economics, McGraw-Hill, Inc.

Sowa JF (1999) Knowledge Representation: Logical, Philosophical, and
Computational Foundations, Course Technology

Silverston L, Inmon WH, Graziano K (1997) Data Model Resource Book, A Library
of Logical data Models and Data Warehouse Designs, John Wiley & Sons,
New York, Chichester, Weinheim, Brisbane, Singapore, Toronto

UML 2.0 Superstructure Specification (2005), OMG document formal/05-07-04

Disclaimer

The information, views and opinions expressed in this paper constitute solely the author’s views and opinions and do not represent in any way CSC’s official
corporate views and opinions. The author has made every attempt to ensure that the information contained in this paper has been obtained from reliable
sources. CSC is not responsible for any errors or omissions or for the results obtained from the use of this information. All information in this paper is provided
“as is,” with no guarantee by CSC of completeness, accuracy, timeliness or the results obtained from the use of this information, and without warranty of any
kind, express or implied, including but not limited to warranties of performance, merchantability and fitness for a particular purpose.

In no event will CSC, its related partnerships or corporations, or the partners, agents or employees thereof be liable to you or anyone else for any decision
made or action taken in reliance on the information in this paper or for any consequential, special or similar damages, even if advised of the possibility of such
damages.

Major parts of this paper are based on the book by Pavel Hruby, Jesper Kiehn and Christian Vibe Scheller, Model-Driven Design Using Business Patterns,
copyright Springer-Verlag Berlin Heidelberg 2006.

© Copyright 2008 Pavel Hruby

